Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61430
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNiu, Shengshengen
dc.contributor.authorSong, Shijien
dc.contributor.authorDing, Jian-Yaen
dc.contributor.authorZhang, Yulien
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:03:21Z-
dc.date.available2024-07-10T01:03:21Z-
dc.date.issued2019-
dc.identifier.citationComputers and Operations Research, v.101, p. 13-28en
dc.identifier.issn1873-765Xen
dc.identifier.issn0305-0548en
dc.identifier.urihttps://hdl.handle.net/1959.11/61430-
dc.description.abstract<p>This paper proposes a distributionally robust optimization (DRO) model for single machine scheduling with uncertain processing times. The processing time of each job is assumed to be an unknown random variable within a given distributional set, which is described by mean and variance information. The proposed DRO model aims to find an optimal sequence that minimizes the expected worst-case total tardiness. To the best of our knowledge, it is the first time in the relevant literature that a DRO approach is adopted to minimize the total tardiness criterion for machine scheduling. An explicit expression is derived as an upper bound approximation for the robust objective, and then we transform the DRO problem into a mixed integer second-order cone programming problem. To solve this problem, a branch-and-bound algorithm with several novel bounding procedures and dominance rules is designed. Computational experiments confirm that the bounding procedures and dominance rules contribute significantly to the algorithm's efficiency, and problem instances with up to 30 jobs can be optimally solved within 40 s. To tackle large-scale problem instances, we further design a beam search algorithm with filtering and recovering phases. Additional experiments with instances beyond 30 jobs confirm the efficacy of this beam search algorithm. To test the effectiveness of the proposed DRO model, we compare the robust sequences to nominal sequences under different processing time distributions. Experimental results show that the robust sequences perform better than nominal sequences, especially when the due dates are relatively loose.</p>en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofComputers and Operations Researchen
dc.titleDistributionally robust single machine scheduling with the total tardiness criterionen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.cor.2018.08.007en
local.contributor.firstnameShengshengen
local.contributor.firstnameShijien
local.contributor.firstnameJian-Yaen
local.contributor.firstnameYulien
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage13en
local.format.endpage28en
local.peerreviewedYesen
local.identifier.volume101en
local.contributor.lastnameNiuen
local.contributor.lastnameSongen
local.contributor.lastnameDingen
local.contributor.lastnameZhangen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61430en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDistributionally robust single machine scheduling with the total tardiness criterionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorNiu, Shengshengen
local.search.authorSong, Shijien
local.search.authorDing, Jian-Yaen
local.search.authorZhang, Yulien
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2019-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2019en
local.year.presented2019en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/cbc1eb61-1f32-4691-aed9-1a468326603aen
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

33
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.