Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFan, Zongwenen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zhongyien
dc.contributor.authorDhakal, Sandeepen
dc.contributor.authorLin, Yuqingen
dc.date.accessioned2024-07-10T01:02:50Z-
dc.date.available2024-07-10T01:02:50Z-
dc.date.issued2019-06-11-
dc.identifier.citationJournal of Intelligent and Fuzzy Systems, 36(6), p. 6219-6229en
dc.identifier.issn1875-8967en
dc.identifier.issn1064-1246en
dc.identifier.urihttps://hdl.handle.net/1959.11/61421-
dc.description.abstract<p>Residuary resistance prediction is an important initial step in the process of designing a sailing yacht. Being able to predict the residuary resistance accurately is crucial for calculating the required propulsive power and ensuring good performance of the sailing yacht. This paper presents a two-layer Wang-Mendel (WM) fuzzy approach to improve the approximation ability of the WM model for this prediction task. Unlike the traditional WM method, in which the consequent of its fuzzy rules is a fuzzy set, the consequent of our proposed approach corresponds to a fuzzy rule base. We apply a top-down method and fuzzy-rule clustering to construct the two-layer WM model, while a bottom-up method is employed to predict the residuary resistance. Experimental results based on two benchmark functions and a yacht hydrodynamics application show that the proposed approach is able to obtain improved robustness and accuracy in predicting residuary resistance compared to other WM model variants and well-known machine learning algorithms.</p>en
dc.languageenen
dc.publisherIOS Pressen
dc.relation.ispartofJournal of Intelligent and Fuzzy Systemsen
dc.titleA two-layer Wang-Mendel fuzzy approach for predicting the residuary resistance of sailing yachtsen
dc.typeJournal Articleen
dc.identifier.doi10.3233/JIFS-182518en
local.contributor.firstnameZongwenen
local.contributor.firstnameRaymonden
local.contributor.firstnameZhongyien
local.contributor.firstnameSandeepen
local.contributor.firstnameYuqingen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage6219en
local.format.endpage6229en
local.peerreviewedYesen
local.identifier.volume36en
local.identifier.issue6en
local.contributor.lastnameFanen
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
local.contributor.lastnameDhakalen
local.contributor.lastnameLinen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61421en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA two-layer Wang-Mendel fuzzy approach for predicting the residuary resistance of sailing yachtsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorFan, Zongwenen
local.search.authorChiong, Raymonden
local.search.authorHu, Zhongyien
local.search.authorDhakal, Sandeepen
local.search.authorLin, Yuqingen
local.uneassociationNoen
dc.date.presented2019-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2019en
local.year.presented2019en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

12
checked on Jan 18, 2025

Page view(s)

168
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.