Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61421
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fan, Zongwen | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Hu, Zhongyi | en |
dc.contributor.author | Dhakal, Sandeep | en |
dc.contributor.author | Lin, Yuqing | en |
dc.date.accessioned | 2024-07-10T01:02:50Z | - |
dc.date.available | 2024-07-10T01:02:50Z | - |
dc.date.issued | 2019-06-11 | - |
dc.identifier.citation | Journal of Intelligent and Fuzzy Systems, 36(6), p. 6219-6229 | en |
dc.identifier.issn | 1875-8967 | en |
dc.identifier.issn | 1064-1246 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61421 | - |
dc.description.abstract | <p>Residuary resistance prediction is an important initial step in the process of designing a sailing yacht. Being able to predict the residuary resistance accurately is crucial for calculating the required propulsive power and ensuring good performance of the sailing yacht. This paper presents a two-layer Wang-Mendel (WM) fuzzy approach to improve the approximation ability of the WM model for this prediction task. Unlike the traditional WM method, in which the consequent of its fuzzy rules is a fuzzy set, the consequent of our proposed approach corresponds to a fuzzy rule base. We apply a top-down method and fuzzy-rule clustering to construct the two-layer WM model, while a bottom-up method is employed to predict the residuary resistance. Experimental results based on two benchmark functions and a yacht hydrodynamics application show that the proposed approach is able to obtain improved robustness and accuracy in predicting residuary resistance compared to other WM model variants and well-known machine learning algorithms.</p> | en |
dc.language | en | en |
dc.publisher | IOS Press | en |
dc.relation.ispartof | Journal of Intelligent and Fuzzy Systems | en |
dc.title | A two-layer Wang-Mendel fuzzy approach for predicting the residuary resistance of sailing yachts | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3233/JIFS-182518 | en |
local.contributor.firstname | Zongwen | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Zhongyi | en |
local.contributor.firstname | Sandeep | en |
local.contributor.firstname | Yuqing | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.format.startpage | 6219 | en |
local.format.endpage | 6229 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 36 | en |
local.identifier.issue | 6 | en |
local.contributor.lastname | Fan | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Hu | en |
local.contributor.lastname | Dhakal | en |
local.contributor.lastname | Lin | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61421 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A two-layer Wang-Mendel fuzzy approach for predicting the residuary resistance of sailing yachts | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Fan, Zongwen | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Hu, Zhongyi | en |
local.search.author | Dhakal, Sandeep | en |
local.search.author | Lin, Yuqing | en |
local.uneassociation | No | en |
dc.date.presented | 2019 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2019 | en |
local.year.presented | 2019 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-23 | en |
Appears in Collections: | Journal Article School of Science and Technology |
SCOPUSTM
Citations
12
checked on Jan 18, 2025
Page view(s)
168
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.