Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61415
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Zheen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zheng-pingen
dc.date.accessioned2024-07-10T01:02:23Z-
dc.date.available2024-07-10T01:02:23Z-
dc.date.issued2020-09-27-
dc.identifier.citationKnowledge-Based Systems, v.204, p. 1-8en
dc.identifier.issn1872-7409en
dc.identifier.issn0950-7051en
dc.identifier.urihttps://hdl.handle.net/1959.11/61415-
dc.description.abstract<p>Conventional feature extraction methods generally focus on extracting global and local features from the original data or converting a high dimensional space to a lower dimensional one. However, they tend to overlook the discriminative information of pixel values hidden in the original data. Pixel values in some local parts of a face, such as the mouth, eyebrows and eyes, provide extremely useful information for expression recognition, as they reveal the correlation between these local parts. While this information can be learned manually, being able to automatically identify important location information in this context is highly desirable. Given this, we propose a self-adaptive feature learning approach based on a priori knowledge for facial expression recognition in this paper. The proposed approach aims to adaptively select active features. It first generates an intra-class, low-rank dictionary that can decouple the original space from the expression subspace and mitigate the dependence on individual facial identities. Next, the active feature dictionary is formed, taking both global and local importance into account simultaneously. After that, the principal component of the active feature dictionary is extracted to address the influence of redundant features and reduce the dimension. We also introduce an active feature learning model as the final classification framework to make the features more discriminative and reduce the computation time. Results of comprehensive experiments on public facial expression datasets confirm the efficacy of the proposed approach, in terms of accuracy and computation time, compared to some state-of-the-art feature extraction and dictionary learning methods.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofKnowledge-Based Systemsen
dc.titleSelf-adaptive feature learning based on a priori knowledge for facial expression recognitionen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.knosys.2020.106124en
local.contributor.firstnameZheen
local.contributor.firstnameRaymonden
local.contributor.firstnameZheng-pingen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber106124en
local.format.startpage1en
local.format.endpage8en
local.peerreviewedYesen
local.identifier.volume204en
local.contributor.lastnameSunen
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61415en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSelf-adaptive feature learning based on a priori knowledge for facial expression recognitionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSun, Zheen
local.search.authorChiong, Raymonden
local.search.authorHu, Zheng-pingen
local.uneassociationNoen
dc.date.presented2020-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.year.presented2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/f3681083-f3eb-421c-9fa1-9d761f8ae845en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

21
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.