Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61413
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Budhi, Gregorius Satia | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Dhakal, Sandeep | en |
dc.date.accessioned | 2024-07-10T01:02:16Z | - |
dc.date.available | 2024-07-10T01:02:16Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Cluster Computing, v.23, p. 3371-3386 | en |
dc.identifier.issn | 1573-7543 | en |
dc.identifier.issn | 1386-7857 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61413 | - |
dc.description.abstract | <p>Ensemble learning is increasingly used in sentiment analysis. Determining the parameter settings of ensemble models, however, is not easy. Besides its own parameters, an ensemble model has base-predictors that have their individual parameters. Some ensemble models use a specific base-predictor and could be optimised using standard metaheuristics such as the Particle Swarm Optimisation (PSO) approach. Optimising ensemble models with multiple base-predictor candidates is more complicated and challenging, as there are multiple options to choose from. We therefore propose Multi-Level PSO (ML-PSO) and Parallel ML-PSO (PML-PSO) to optimise the parameters of ensemble models, especially those with multiple base-predictors, for sentiment analysis. The idea is to utilise multiple PSOs as particles of the main PSO. The main PSO optimises ensemble-model parameters and determines the best base-predictor, whereas PSOs within it optimise the corresponding base-predictor’s parameters. Experimental results using Bagging Predictors as the underlying ensemble model show that ML-PSO can improve prediction accuracy, while PML-PSO is able to speed up the processing time and further improve the accuracy.</p> | en |
dc.language | en | en |
dc.publisher | Springer New York LLC | en |
dc.relation.ispartof | Cluster Computing | en |
dc.title | Multi-level particle swarm optimisation and its parallel version for parameter optimisation of ensemble models: a case of sentiment polarity prediction | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s10586-020-03093-3 | en |
local.contributor.firstname | Gregorius Satia | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Sandeep | en |
local.profile.school | School of Science & Technology | en |
local.profile.school | UNE Business School | en |
local.profile.email | rchiong@une.edu.au | en |
local.profile.email | sdhakal2@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 3371 | en |
local.format.endpage | 3386 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 23 | en |
local.title.subtitle | a case of sentiment polarity prediction | en |
local.contributor.lastname | Budhi | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Dhakal | en |
dc.identifier.staff | une-id:rchiong | en |
dc.identifier.staff | une-id:sdhakal2 | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.orcid | 0000-0001-8507-3206 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61413 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Multi-level particle swarm optimisation and its parallel version for parameter optimisation of ensemble models | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Budhi, Gregorius Satia | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Dhakal, Sandeep | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2020 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/81c98979-0343-46da-b91c-2051d957caf2 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-23 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
3
checked on Jan 18, 2025
Page view(s)
94
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.