Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61411
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Chaoqunen
dc.contributor.authorHu, Zhongyien
dc.contributor.authorChiong, Raymonden
dc.contributor.authorBao, Yukunen
dc.contributor.authorWu, Jiangen
dc.date.accessioned2024-07-10T01:02:07Z-
dc.date.available2024-07-10T01:02:07Z-
dc.date.issued2020-
dc.identifier.citationElectronic Library, 38(5-6), p. 1073-1093en
dc.identifier.issn1758-616Xen
dc.identifier.issn0264-0473en
dc.identifier.urihttps://hdl.handle.net/1959.11/61411-
dc.description.abstract<p><b>Purpose</b> – The aim of this study is to propose an efficient rule extraction and integration approach for identifying phishing websites. The proposed approach can elucidate patterns of phishing websites and identify them accurately.</p> <p><b>Design/methodology/approach</b> – Hyperlink indicators along with URL-based features are used to build the identification model. In the proposed approach, very simple rules are first extracted based on individual features to provide meaningful and easy-to-understand rules. Then, the F-measure score is used to select high-quality rules for identifying phishing websites. To construct a reliable and promising phishing website identification model, the selected rules are integrated using a simple neural network model.</p> <p><b>Findings</b> – Experiments conducted using self-collected and benchmark data sets show that the proposed approach outperforms 16 commonly used classifiers (including seven non–rule-based and four rule-based classifiers as well as five deep learning models) in terms of interpretability and identification performance.</p> <p><b>Originality/value</b> – Investigating patterns of phishing websites based on hyperlink indicators using the efficient rule-based approach is innovative. It is not only helpful for identifying phishing websites, but also beneficial for extracting simple and understandable rules.</p>en
dc.languageenen
dc.publisherEmerald Publishing Limiteden
dc.relation.ispartofElectronic Libraryen
dc.titleIdentification of phishing websites through hyperlink analysis and rule extractionen
dc.typeJournal Articleen
dc.identifier.doi10.1108/EL-01-2020-0016en
local.contributor.firstnameChaoqunen
local.contributor.firstnameZhongyien
local.contributor.firstnameRaymonden
local.contributor.firstnameYukunen
local.contributor.firstnameJiangen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage1073en
local.format.endpage1093en
local.peerreviewedYesen
local.identifier.volume38en
local.identifier.issue5-6en
local.contributor.lastnameWangen
local.contributor.lastnameHuen
local.contributor.lastnameChiongen
local.contributor.lastnameBaoen
local.contributor.lastnameWuen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61411en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleIdentification of phishing websites through hyperlink analysis and rule extractionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorWang, Chaoqunen
local.search.authorHu, Zhongyien
local.search.authorChiong, Raymonden
local.search.authorBao, Yukunen
local.search.authorWu, Jiangen
local.uneassociationNoen
dc.date.presented2020-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.year.presented2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/885b7bf5-9fa6-4e39-8077-7596dc963f65en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-24en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

6
checked on Jan 18, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.