Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61411
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Chaoqun | en |
dc.contributor.author | Hu, Zhongyi | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Bao, Yukun | en |
dc.contributor.author | Wu, Jiang | en |
dc.date.accessioned | 2024-07-10T01:02:07Z | - |
dc.date.available | 2024-07-10T01:02:07Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Electronic Library, 38(5-6), p. 1073-1093 | en |
dc.identifier.issn | 1758-616X | en |
dc.identifier.issn | 0264-0473 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61411 | - |
dc.description.abstract | <p><b>Purpose</b> – The aim of this study is to propose an efficient rule extraction and integration approach for identifying phishing websites. The proposed approach can elucidate patterns of phishing websites and identify them accurately.</p> <p><b>Design/methodology/approach</b> – Hyperlink indicators along with URL-based features are used to build the identification model. In the proposed approach, very simple rules are first extracted based on individual features to provide meaningful and easy-to-understand rules. Then, the F-measure score is used to select high-quality rules for identifying phishing websites. To construct a reliable and promising phishing website identification model, the selected rules are integrated using a simple neural network model.</p> <p><b>Findings</b> – Experiments conducted using self-collected and benchmark data sets show that the proposed approach outperforms 16 commonly used classifiers (including seven non–rule-based and four rule-based classifiers as well as five deep learning models) in terms of interpretability and identification performance.</p> <p><b>Originality/value</b> – Investigating patterns of phishing websites based on hyperlink indicators using the efficient rule-based approach is innovative. It is not only helpful for identifying phishing websites, but also beneficial for extracting simple and understandable rules.</p> | en |
dc.language | en | en |
dc.publisher | Emerald Publishing Limited | en |
dc.relation.ispartof | Electronic Library | en |
dc.title | Identification of phishing websites through hyperlink analysis and rule extraction | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1108/EL-01-2020-0016 | en |
local.contributor.firstname | Chaoqun | en |
local.contributor.firstname | Zhongyi | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Yukun | en |
local.contributor.firstname | Jiang | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 1073 | en |
local.format.endpage | 1093 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 38 | en |
local.identifier.issue | 5-6 | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | Hu | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Bao | en |
local.contributor.lastname | Wu | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61411 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Identification of phishing websites through hyperlink analysis and rule extraction | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Wang, Chaoqun | en |
local.search.author | Hu, Zhongyi | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Bao, Yukun | en |
local.search.author | Wu, Jiang | en |
local.uneassociation | No | en |
dc.date.presented | 2020 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2020 | en |
local.year.presented | 2020 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/885b7bf5-9fa6-4e39-8077-7596dc963f65 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-24 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
6
checked on Jan 18, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.