Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEbrahimighahnavieh, Amiren
dc.contributor.authorLuo, Suhuaien
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:01:57Z-
dc.date.available2024-07-10T01:01:57Z-
dc.date.issued2020-04-
dc.identifier.citationComputer Methods and Programs in Biomedicine, v.187, p. 1-22en
dc.identifier.issn1872-7565en
dc.identifier.issn0169-2607en
dc.identifier.urihttps://hdl.handle.net/1959.11/61408-
dc.description.abstract<p>Alzheimer's Disease (AD) is one of the leading causes of death in developed countries. From a research point of view, impressive results have been reported using computer-aided algorithms, but clinically no practical diagnostic method is available. In recent years, deep models have become popular, especially in dealing with images. Since 2013, deep learning has begun to gain considerable attention in AD detection research, with the number of published papers in this area increasing drastically since 2017. Deep models have been reported to be more accurate for AD detection compared to general machine learning techniques. Nevertheless, AD detection is still challenging, and for classification, it requires a highly discriminative feature representation to separate similar brain patterns. This paper reviews the current state of AD detection using deep learning. Through a systematic literature review of over 100 articles, we set out the most recent findings and trends. Specifically, we review useful biomarkers and features (personal information, genetic data, and brain scans), the necessary pre-processing steps, and different ways of dealing with neuroimaging data originating from single-modality and multi-modality studies. Deep models and their performance are described in detail. Although deep learning has achieved notable performance in detecting AD, there are several limitations, especially regarding the availability of datasets and training procedures.</p>en
dc.languageenen
dc.publisherElsevier Ireland Ltden
dc.relation.ispartofComputer Methods and Programs in Biomedicineen
dc.titleDeep learning to detect Alzheimer's disease from neuroimaging: A systematic literature reviewen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.cmpb.2019.105242en
local.contributor.firstnameAmiren
local.contributor.firstnameSuhuaien
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeIrelanden
local.identifier.runningnumber105242en
local.format.startpage1en
local.format.endpage22en
local.peerreviewedYesen
local.identifier.volume187en
local.title.subtitleA systematic literature reviewen
local.contributor.lastnameEbrahimighahnaviehen
local.contributor.lastnameLuoen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61408en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDeep learning to detect Alzheimer's disease from neuroimagingen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorEbrahimighahnavieh, Amiren
local.search.authorLuo, Suhuaien
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2020-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.year.presented2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/4deef808-8ed3-4232-bfa1-a6ce0253c1f0en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

231
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.