Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61396
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSatia Budhi, Gregoriusen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorWang, Zulyen
dc.contributor.authorDhakal, Sandeepen
dc.date.accessioned2024-07-10T01:01:18Z-
dc.date.available2024-07-10T01:01:18Z-
dc.date.issued2021-
dc.identifier.citationElectronic Commerce Research and Applications, v.47en
dc.identifier.issn1873-7846en
dc.identifier.issn1567-4223en
dc.identifier.urihttps://hdl.handle.net/1959.11/61396-
dc.description.abstract<p>The financial impact of positive reviews has prompted some fraudulent sellers to generate fake product reviews for either promoting their products or discrediting competing products. Many e-commerce portals have implemented measures to detect such fake reviews, and these measures require excellent detectors to be effective. In this work, we propose 133 unique features from the combination of content and behaviour-based features to detect fake reviews using machine learning classifiers. Preliminary results show that these features can provide good results for all datasets tested. Detailed analysis of the results, however, reveals the existence of class imbalance issues for two of the bigger datasets - there is a high imbalance between the accuracies of different classes (e.g., 7.73% for the fake class and 99.3% for the genuine class using a Multilayer Perceptron classifier). We therefore introduce two sampling methods that can improve the accuracy of the fake review class on balanced datasets. The accuracies can be improved to a maximum of 89% for both random under and over-sampling on Convolutional Neural Networks. Additionally, we propose a parallel cross-validation method that can speed up the validation process in a parallel environment.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofElectronic Commerce Research and Applicationsen
dc.titleUsing a hybrid content-based and behaviour-based featuring approach in a parallel environment to detect fake reviewsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.elerap.2021.101048en
local.contributor.firstnameGregoriusen
local.contributor.firstnameRaymonden
local.contributor.firstnameZulyen
local.contributor.firstnameSandeepen
local.profile.schoolSchool of Science & Technologyen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber101048en
local.peerreviewedYesen
local.identifier.volume47en
local.contributor.lastnameSatia Budhien
local.contributor.lastnameChiongen
local.contributor.lastnameWangen
local.contributor.lastnameDhakalen
dc.identifier.staffune-id:rchiongen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61396en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleUsing a hybrid content-based and behaviour-based featuring approach in a parallel environment to detect fake reviewsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSatia Budhi, Gregoriusen
local.search.authorChiong, Raymonden
local.search.authorWang, Zulyen
local.search.authorDhakal, Sandeepen
local.uneassociationNoen
dc.date.presented2021-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021-
local.year.presented2021en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-24en
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

37
checked on Jan 18, 2025

Page view(s)

158
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.