Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61396
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Satia Budhi, Gregorius | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Wang, Zuly | en |
dc.contributor.author | Dhakal, Sandeep | en |
dc.date.accessioned | 2024-07-10T01:01:18Z | - |
dc.date.available | 2024-07-10T01:01:18Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Electronic Commerce Research and Applications, v.47 | en |
dc.identifier.issn | 1873-7846 | en |
dc.identifier.issn | 1567-4223 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61396 | - |
dc.description.abstract | <p>The financial impact of positive reviews has prompted some fraudulent sellers to generate fake product reviews for either promoting their products or discrediting competing products. Many e-commerce portals have implemented measures to detect such fake reviews, and these measures require excellent detectors to be effective. In this work, we propose 133 unique features from the combination of content and behaviour-based features to detect fake reviews using machine learning classifiers. Preliminary results show that these features can provide good results for all datasets tested. Detailed analysis of the results, however, reveals the existence of class imbalance issues for two of the bigger datasets - there is a high imbalance between the accuracies of different classes (e.g., 7.73% for the fake class and 99.3% for the genuine class using a Multilayer Perceptron classifier). We therefore introduce two sampling methods that can improve the accuracy of the fake review class on balanced datasets. The accuracies can be improved to a maximum of 89% for both random under and over-sampling on Convolutional Neural Networks. Additionally, we propose a parallel cross-validation method that can speed up the validation process in a parallel environment.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Electronic Commerce Research and Applications | en |
dc.title | Using a hybrid content-based and behaviour-based featuring approach in a parallel environment to detect fake reviews | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.elerap.2021.101048 | en |
local.contributor.firstname | Gregorius | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Zuly | en |
local.contributor.firstname | Sandeep | en |
local.profile.school | School of Science & Technology | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 101048 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 47 | en |
local.contributor.lastname | Satia Budhi | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | Dhakal | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61396 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Using a hybrid content-based and behaviour-based featuring approach in a parallel environment to detect fake reviews | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Satia Budhi, Gregorius | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Wang, Zuly | en |
local.search.author | Dhakal, Sandeep | en |
local.uneassociation | No | en |
dc.date.presented | 2021 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2021 | - |
local.year.presented | 2021 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-24 | en |
Appears in Collections: | Journal Article School of Science and Technology |
SCOPUSTM
Citations
37
checked on Jan 18, 2025
Page view(s)
158
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.