Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61393
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sutter, Ben | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Budhi, Gregorius Satia | en |
dc.contributor.author | Dhakal, Sandeep | en |
local.source.editor | Editor(s): Randy Goebel, Yuzuru Tanaka and Wolfgang Wahlster | en |
dc.date.accessioned | 2024-07-10T01:01:09Z | - |
dc.date.available | 2024-07-10T01:01:09Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Advances and Trends in Artificial Intelligence: Artificial Intelligence Practices, 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Proceedings, Part I, p. 341-352 | en |
dc.identifier.isbn | 9783030794576 | en |
dc.identifier.isbn | 9783030794569 | en |
dc.identifier.issn | 1611-3349 | en |
dc.identifier.issn | 0302-9743 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61393 | - |
dc.description.abstract | <p>Over 300 million people worldwide were suffering from depression in 2017. Australia alone invests more than $9.1 billion each year on mental health related services. Traditional intervention methods require patients to first present with symptoms before diagnosis, leading to a reactive approach. A more proactive approach to this problem is highly desirable, and despite ongoing work using approaches such as machine learning, further work is required. This paper aims to provide a foundation by building a machine learning model across multiple techniques to predict psychological distress from ecological factors alone. Eight different classification techniques were implemented on a sample dataset, with the best results achieved through Logistic Regression, providing an accuracy of 0.811. The preliminary results suggest that, with future improvements to implementation and analysis, an accurate and reliable model is possible. This study, with the proposed base model, can potentially lead to the development of a proactive solution to the global mental health crisis.</p> | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Advances and Trends in Artificial Intelligence: Artificial Intelligence Practices, 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Proceedings, Part I | en |
dc.relation.ispartofseries | Lecture Notes in Computer Science | en |
dc.title | Predicting Psychological Distress from Ecological Factors: A Machine Learning Approach | en |
dc.type | Conference Publication | en |
dc.relation.conference | IEA/AIE 2021: 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems | en |
dc.identifier.doi | 10.1007/978-3-030-79457-6_30 | en |
local.contributor.firstname | Ben | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Gregorius Satia | en |
local.contributor.firstname | Sandeep | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 26th - 29th July, 2021 | en |
local.conference.place | Kuala Lumpur, Malaysia | en |
local.publisher.place | Switzerland | en |
local.format.startpage | 341 | en |
local.format.endpage | 352 | en |
local.series.number | 12798 | en |
local.peerreviewed | Yes | en |
local.title.subtitle | A Machine Learning Approach | en |
local.contributor.lastname | Sutter | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Budhi | en |
local.contributor.lastname | Dhakal | en |
local.seriespublisher | Springer | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61393 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Predicting Psychological Distress from Ecological Factors | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | IEA/AIE 2021: 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Kuala Lumpur, Malaysia, 26th - 29th July, 2021 | en |
local.search.author | Sutter, Ben | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Budhi, Gregorius Satia | en |
local.search.author | Dhakal, Sandeep | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2021 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-28 | en |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
3
checked on Oct 26, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.