Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61393
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSutter, Benen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorBudhi, Gregorius Satiaen
dc.contributor.authorDhakal, Sandeepen
local.source.editorEditor(s): Randy Goebel, Yuzuru Tanaka and Wolfgang Wahlsteren
dc.date.accessioned2024-07-10T01:01:09Z-
dc.date.available2024-07-10T01:01:09Z-
dc.date.issued2021-
dc.identifier.citationAdvances and Trends in Artificial Intelligence: Artificial Intelligence Practices, 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Proceedings, Part I, p. 341-352en
dc.identifier.isbn9783030794576en
dc.identifier.isbn9783030794569en
dc.identifier.issn1611-3349en
dc.identifier.issn0302-9743en
dc.identifier.urihttps://hdl.handle.net/1959.11/61393-
dc.description.abstract<p>Over 300 million people worldwide were suffering from depression in 2017. Australia alone invests more than $9.1 billion each year on mental health related services. Traditional intervention methods require patients to first present with symptoms before diagnosis, leading to a reactive approach. A more proactive approach to this problem is highly desirable, and despite ongoing work using approaches such as machine learning, further work is required. This paper aims to provide a foundation by building a machine learning model across multiple techniques to predict psychological distress from ecological factors alone. Eight different classification techniques were implemented on a sample dataset, with the best results achieved through Logistic Regression, providing an accuracy of 0.811. The preliminary results suggest that, with future improvements to implementation and analysis, an accurate and reliable model is possible. This study, with the proposed base model, can potentially lead to the development of a proactive solution to the global mental health crisis.</p>en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofAdvances and Trends in Artificial Intelligence: Artificial Intelligence Practices, 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Proceedings, Part Ien
dc.relation.ispartofseriesLecture Notes in Computer Scienceen
dc.titlePredicting Psychological Distress from Ecological Factors: A Machine Learning Approachen
dc.typeConference Publicationen
dc.relation.conferenceIEA/AIE 2021: 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systemsen
dc.identifier.doi10.1007/978-3-030-79457-6_30en
local.contributor.firstnameBenen
local.contributor.firstnameRaymonden
local.contributor.firstnameGregorius Satiaen
local.contributor.firstnameSandeepen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference26th - 29th July, 2021en
local.conference.placeKuala Lumpur, Malaysiaen
local.publisher.placeSwitzerlanden
local.format.startpage341en
local.format.endpage352en
local.series.number12798en
local.peerreviewedYesen
local.title.subtitleA Machine Learning Approachen
local.contributor.lastnameSutteren
local.contributor.lastnameChiongen
local.contributor.lastnameBudhien
local.contributor.lastnameDhakalen
local.seriespublisherSpringeren
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61393en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitlePredicting Psychological Distress from Ecological Factorsen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIEA/AIE 2021: 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Kuala Lumpur, Malaysia, 26th - 29th July, 2021en
local.search.authorSutter, Benen
local.search.authorChiong, Raymonden
local.search.authorBudhi, Gregorius Satiaen
local.search.authorDhakal, Sandeepen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-28en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

3
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.