Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61391
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | He, Lijun | en |
dc.contributor.author | Li, Wenfeng | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Abedi, Mehdi | en |
dc.contributor.author | Cao, Yulian | en |
dc.contributor.author | Zhang, Yu | en |
dc.date.accessioned | 2024-07-10T01:01:03Z | - |
dc.date.available | 2024-07-10T01:01:03Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Applied Soft Computing, v.111, p. 1-20 | en |
dc.identifier.issn | 1872-9681 | en |
dc.identifier.issn | 1568-4946 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61391 | - |
dc.description.abstract | <p>This paper presents an effective multi-objective Jaya (EMOJaya) algorithm to solve a multi-objective job-shop scheduling problem, aiming to simultaneously minimise the makespan, total flow time and mean tardiness. A strategy based on grey entropy parallel analysis (GEPA) is developed to assess and select solutions during the search process. To obtain a high-quality reference sequence for GEPA, an opposition-based learning (OBL) strategy is used in parallel. Additionally, the OBL strategy is incorporated into Jaya's search operation and external archive to enhance the search ability and convergence rate of the algorithm. Computational experiments based on 30 benchmark instances with different scales confirm that GEPA and OBL can significantly improve the performance of our proposed EMOJaya. Experimental results also show that EMOJaya is able to outperform three state-of-the-art multi-objective algorithms in solving the problem at hand in terms of convergence, diversity and distribution. Further, EMOJaya can obtain more high-quality scheduling schemes, which provide more and better options for decision makers.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Applied Soft Computing | en |
dc.title | Optimising the job-shop scheduling problem using a multi-objective Jaya algorithm | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.asoc.2021.107654 | en |
local.contributor.firstname | Lijun | en |
local.contributor.firstname | Wenfeng | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Mehdi | en |
local.contributor.firstname | Yulian | en |
local.contributor.firstname | Yu | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 107654 | en |
local.format.startpage | 1 | en |
local.format.endpage | 20 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 111 | en |
local.contributor.lastname | He | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Abedi | en |
local.contributor.lastname | Cao | en |
local.contributor.lastname | Zhang | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61391 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Optimising the job-shop scheduling problem using a multi-objective Jaya algorithm | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | He, Lijun | en |
local.search.author | Li, Wenfeng | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Abedi, Mehdi | en |
local.search.author | Cao, Yulian | en |
local.search.author | Zhang, Yu | en |
local.uneassociation | No | en |
dc.date.presented | 2021 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2021 | en |
local.year.presented | 2021 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/6f3a11dd-86ec-4242-a8d2-a50fcd34ca25 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-26 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
33
checked on Jan 11, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.