Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61390
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Xinyu | en |
dc.contributor.author | Chiong, Raymond | en |
dc.contributor.author | Hu, Zhongyi | en |
dc.contributor.author | Page, Alister J | en |
dc.date.accessioned | 2024-07-10T01:00:59Z | - |
dc.date.available | 2024-07-10T01:00:59Z | - |
dc.date.issued | 2021-08 | - |
dc.identifier.citation | Journal of Physical Chemistry Letters, 12(30), p. 7305-7311 | en |
dc.identifier.issn | 1948-7185 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61390 | - |
dc.description.abstract | <p>Pt is a key high-performing catalyst for important chemical conversions, such as biomass conversion and water splitting. Limited Pt reserves, however, demand that we identify more sustainable alternative catalyst materials for these processes. Here, we combine state-ofthe-art graph neural networks and crystal graph machine learning representations with active learning to discover new, low-cost Pt alloy catalysts for biomass reforming and hydrogen evolution reactions. We identify 12 Pt-based alloys which have comparable catalytic activity to that of the exemplar Pt(111) surface. Notably, Cu<sub>3</sub>Pt and FeCuPt<sub>2</sub> exhibit near identical catalytic performance as that of Pt(111). These results demonstrate the potential of machine learning for predicting new catalytic materials without recourse to expensive DFT geometry optimizations, the current bottleneck impeding high-throughput materials discovery. We also examine the performance of <i>d</i>-band theory in elucidating trends in binary and ternary Pt alloys.</p> | en |
dc.language | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.ispartof | Journal of Physical Chemistry Letters | en |
dc.title | Low-Cost Pt Alloys for Heterogeneous Catalysis Predicted by Density Functional Theory and Active Learning | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1021/acs.jpclett.1c01851 | en |
local.contributor.firstname | Xinyu | en |
local.contributor.firstname | Raymond | en |
local.contributor.firstname | Zhongyi | en |
local.contributor.firstname | Alister J | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 7305 | en |
local.format.endpage | 7311 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 12 | en |
local.identifier.issue | 30 | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Hu | en |
local.contributor.lastname | Page | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61390 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Low-Cost Pt Alloys for Heterogeneous Catalysis Predicted by Density Functional Theory and Active Learning | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Li, Xinyu | en |
local.search.author | Chiong, Raymond | en |
local.search.author | Hu, Zhongyi | en |
local.search.author | Page, Alister J | en |
local.uneassociation | No | en |
dc.date.presented | 2021 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2021 | en |
local.year.presented | 2021 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/0028eddb-65db-4e76-a6b1-22c6366d3f72 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-23 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
18
checked on Feb 8, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.