Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61388
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Xinyuen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorPage, Alister Jen
dc.date.accessioned2024-07-10T01:00:53Z-
dc.date.available2024-07-10T01:00:53Z-
dc.date.issued2021-06-03-
dc.identifier.citationJournal of Physical Chemistry Letters, 12(21), p. 5156-5162en
dc.identifier.issn1948-7185en
dc.identifier.urihttps://hdl.handle.net/1959.11/61388-
dc.description.abstract<p>Machine learning has recently emerged as an efficient and powerful alternative to density functional theory for studying heterogeneous catalysis. Machine learning methods rely on a geometrical representation of the chemical environment around the catalytic adsorption site based on physical or chemical descriptors. Here, we show that replacing the atomic number in geometrical representations with elemental groups and periods (GP) yields significant improvements in predicted adsorption energies on bimetallic alloy surfaces. Notably, the GP-based Labeled Site Crystal Graph representation reported here achieves mean absolute error (MAE) ~0.05 eV (near chemical accuracy) in predicting hydrogen adsorption and MAE ~0.10 eV for other strong binding adsorbates such as carbon, nitrogen, oxygen, and sulfur. We also show GP-based representations to be robust in predicting adsorption on surface facets, elements, and alloys that are not included in the initial training set. This reliability makes GP-based representations an ideal basis for high-throughput approaches and materials discovery based on active learning techniques, which often involve limited training sets.</p>en
dc.languageenen
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofJournal of Physical Chemistry Lettersen
dc.titleGroup and Period-Based Representations for Improved Machine Learning Prediction of Heterogeneous Alloy Catalystsen
dc.typeJournal Articleen
dc.identifier.doi10.1021/acs.jpclett.1c01319en
local.contributor.firstnameXinyuen
local.contributor.firstnameRaymonden
local.contributor.firstnameAlister Jen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage5156en
local.format.endpage5162en
local.peerreviewedYesen
local.identifier.volume12en
local.identifier.issue21en
local.contributor.lastnameLien
local.contributor.lastnameChiongen
local.contributor.lastnamePageen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61388en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleGroup and Period-Based Representations for Improved Machine Learning Prediction of Heterogeneous Alloy Catalystsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLi, Xinyuen
local.search.authorChiong, Raymonden
local.search.authorPage, Alister Jen
local.uneassociationNoen
dc.date.presented2021-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021en
local.year.presented2021en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/a264c50f-cc43-490a-ac92-c9227738ab4cen
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

24
checked on Dec 21, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.