Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61384
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ebrahimi, Amir | en |
dc.contributor.author | Luo, Sahuai | en |
dc.contributor.author | Chiong, Raymond | en |
dc.date.accessioned | 2024-07-10T01:00:42Z | - |
dc.date.available | 2024-07-10T01:00:42Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Computers in Biology and Medicine, v.134, p. 1-13 | en |
dc.identifier.issn | 1879-0534 | en |
dc.identifier.issn | 0010-4825 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61384 | - |
dc.description.abstract | <p><i>Background:</i> Alzheimer's disease (AD) is one of the deadliest diseases in developed countries. Treatments following early AD detection can significantly delay institutionalisation and extend patients' independence. There has been a growing focus on early AD detection using artificial intelligence. Convolutional neural networks (CNNs) have proven revolutionary for image-based applications and have been applied to brain scans. In recent years, studies have utilised two-dimensional (2D) CNNs on magnetic resonance imaging (MRI) scans for AD detection. To apply a 2D CNN on three-dimensional (3D) MRI volumes, each MRI scan is split into 2D image slices. A CNN is trained over the image slices by calculating a loss function between each subject's label and each image slice's predicted output. Although 2D CNNs can discover spatial dependencies in an image slice, they cannot understand the temporal dependencies among 2D image slices in a 3D MRI volume. This study aims to resolve this issue by modelling the sequence of MRI features produced by a CNN with deep sequence-based networks for AD detection. <p><i>Method:</i> The CNN utilised in this paper was ResNet-18 pre-trained on an ImageNet dataset. The employed sequence-based models were the temporal convolutional network (TCN) and different types of recurrent neural networks. Several deep sequence-based models and configurations were implemented and compared for AD detection.</p> <p><i>Results:</i> Our proposed TCN model achieved the best classification performance with 91.78% accuracy, 91.56% sensitivity and 92% specificity. Conclusion: Our results show that applying sequence-based models can improve the classification accuracy of 2D and 3D CNNs for AD detection by up to 10%.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier Ltd | en |
dc.relation.ispartof | Computers in Biology and Medicine | en |
dc.title | Deep sequence modelling for Alzheimer's disease detection using MRI | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.compbiomed.2021.104537 | en |
local.contributor.firstname | Amir | en |
local.contributor.firstname | Sahuai | en |
local.contributor.firstname | Raymond | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.identifier.runningnumber | 104537 | en |
local.format.startpage | 1 | en |
local.format.endpage | 13 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 134 | en |
local.contributor.lastname | Ebrahimi | en |
local.contributor.lastname | Luo | en |
local.contributor.lastname | Chiong | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61384 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Deep sequence modelling for Alzheimer's disease detection using MRI | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Ebrahimi, Amir | en |
local.search.author | Luo, Sahuai | en |
local.search.author | Chiong, Raymond | en |
local.uneassociation | No | en |
dc.date.presented | 2021 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2021 | en |
local.year.presented | 2021 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/15b1a421-b64e-4dbc-8a5d-1ff9eae6e86b | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-24 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
62
checked on Oct 26, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.