Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61381
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiong, Ren
dc.contributor.authorBudhi, G Sen
dc.contributor.authorDhakal, Sen
dc.contributor.authorChiong, Fen
dc.date.accessioned2024-07-10T01:00:34Z-
dc.date.available2024-07-10T01:00:34Z-
dc.date.issued2021-08-
dc.identifier.citationComputers in Biology and Medicine, v.135, p. 1-12en
dc.identifier.issn1879-0534en
dc.identifier.issn0010-4825en
dc.identifier.urihttps://hdl.handle.net/1959.11/61381-
dc.description.abstract<p>Depression is one of the leading causes of suicide worldwide. However, a large percentage of cases of depression go undiagnosed and, thus, untreated. Previous studies have found that messages posted by individuals with major depressive disorder on social media platforms can be analysed to predict if they are suffering, or likely to suffer, from depression. This study aims to determine whether machine learning could be effectively used to detect signs of depression in social media users by analysing their social media posts—especially when those messages do not explicitly contain specific keywords such as ‘depression’ or ‘diagnosis’. To this end, we investigate several text preprocessing and textual-based featuring methods along with machine learning classifiers, including single and ensemble models, to propose a generalised approach for depression detection using social media texts. We first use two public, labelled Twitter datasets to train and test the machine learning models, and then another three non-Twitter depression-class-only datasets (sourced from Facebook, Reddit, and an electronic diary) to test the performance of our trained models against other social media sources. Experimental results indicate that the proposed approach is able to effectively detect depression via social media texts even when the training datasets do not contain specific keywords (such as ‘depression’ and ‘diagnose’), as well as when unrelated datasets are used for testing. </p>en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofComputers in Biology and Medicineen
dc.titleA textual-based featuring approach for depression detection using machine learning classifiers and social media textsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.compbiomed.2021.104499en
local.contributor.firstnameRen
local.contributor.firstnameG Sen
local.contributor.firstnameSen
local.contributor.firstnameFen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber104499en
local.format.startpage1en
local.format.endpage12en
local.peerreviewedYesen
local.identifier.volume135en
local.contributor.lastnameChiongen
local.contributor.lastnameBudhien
local.contributor.lastnameDhakalen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61381en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA textual-based featuring approach for depression detection using machine learning classifiers and social media textsen
local.relation.fundingsourcenoteThis work was supported by the University of Newcastle’s College Multidisciplinary Strategic Investment Funding for 2021.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorChiong, Ren
local.search.authorBudhi, G Sen
local.search.authorDhakal, Sen
local.search.authorChiong, Fen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/24544091-c73c-4fcb-8f39-9e65c15eef0fen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/24544091-c73c-4fcb-8f39-9e65c15eef0fen
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/24544091-c73c-4fcb-8f39-9e65c15eef0fen
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-24en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

120
checked on Oct 26, 2024

Page view(s)

150
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.