Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61381
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chiong, R | en |
dc.contributor.author | Budhi, G S | en |
dc.contributor.author | Dhakal, S | en |
dc.contributor.author | Chiong, F | en |
dc.date.accessioned | 2024-07-10T01:00:34Z | - |
dc.date.available | 2024-07-10T01:00:34Z | - |
dc.date.issued | 2021-08 | - |
dc.identifier.citation | Computers in Biology and Medicine, v.135, p. 1-12 | en |
dc.identifier.issn | 1879-0534 | en |
dc.identifier.issn | 0010-4825 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61381 | - |
dc.description.abstract | <p>Depression is one of the leading causes of suicide worldwide. However, a large percentage of cases of depression go undiagnosed and, thus, untreated. Previous studies have found that messages posted by individuals with major depressive disorder on social media platforms can be analysed to predict if they are suffering, or likely to suffer, from depression. This study aims to determine whether machine learning could be effectively used to detect signs of depression in social media users by analysing their social media posts—especially when those messages do not explicitly contain specific keywords such as ‘depression’ or ‘diagnosis’. To this end, we investigate several text preprocessing and textual-based featuring methods along with machine learning classifiers, including single and ensemble models, to propose a generalised approach for depression detection using social media texts. We first use two public, labelled Twitter datasets to train and test the machine learning models, and then another three non-Twitter depression-class-only datasets (sourced from Facebook, Reddit, and an electronic diary) to test the performance of our trained models against other social media sources. Experimental results indicate that the proposed approach is able to effectively detect depression via social media texts even when the training datasets do not contain specific keywords (such as ‘depression’ and ‘diagnose’), as well as when unrelated datasets are used for testing. </p> | en |
dc.language | en | en |
dc.publisher | Elsevier Ltd | en |
dc.relation.ispartof | Computers in Biology and Medicine | en |
dc.title | A textual-based featuring approach for depression detection using machine learning classifiers and social media texts | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.compbiomed.2021.104499 | en |
local.contributor.firstname | R | en |
local.contributor.firstname | G S | en |
local.contributor.firstname | S | en |
local.contributor.firstname | F | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.identifier.runningnumber | 104499 | en |
local.format.startpage | 1 | en |
local.format.endpage | 12 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 135 | en |
local.contributor.lastname | Chiong | en |
local.contributor.lastname | Budhi | en |
local.contributor.lastname | Dhakal | en |
local.contributor.lastname | Chiong | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61381 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A textual-based featuring approach for depression detection using machine learning classifiers and social media texts | en |
local.relation.fundingsourcenote | This work was supported by the University of Newcastle’s College Multidisciplinary Strategic Investment Funding for 2021. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Chiong, R | en |
local.search.author | Budhi, G S | en |
local.search.author | Dhakal, S | en |
local.search.author | Chiong, F | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/24544091-c73c-4fcb-8f39-9e65c15eef0f | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2021 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/24544091-c73c-4fcb-8f39-9e65c15eef0f | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/24544091-c73c-4fcb-8f39-9e65c15eef0f | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-07-24 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
120
checked on Oct 26, 2024
Page view(s)
150
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.