Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61375
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiong, Raymonden
dc.contributor.authorBudhi, Gregorious Satiaen
dc.contributor.authorDhakal, Sandeepen
dc.date.accessioned2024-07-10T01:00:17Z-
dc.date.available2024-07-10T01:00:17Z-
dc.date.issued2021-
dc.identifier.citationIEEE Intelligent Systems, 36(6), p. 99-105en
dc.identifier.issn1941-1294en
dc.identifier.issn1541-1672en
dc.identifier.urihttps://hdl.handle.net/1959.11/61375-
dc.description.abstract<p>Numerous studies on mental depression have found that tweets posted by users with major depressive disorder could be utilized for depression detection. The potential of sentiment analysis for detecting depression through an analysis of social media messages has brought increasing attention to this field. In this article, we propose 90 unique features as input to a machine learning classifier framework for detecting depression using social media texts. Derived from a combination of feature extraction approaches using sentiment lexicons and textual contents, these features are able to provide impressive results in terms of depression detection. While the performance of different feature groups varied, the combination of all features resulted in accuracies greater than 96% for all standard single classifiers, and the best accuracy of over 98% with Gradient Boosting, an ensemble classifier.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofIEEE Intelligent Systemsen
dc.titleCombining Sentiment Lexicons and Content-Based Features for Depression Detectionen
dc.typeJournal Articleen
dc.identifier.doi10.1109/MIS.2021.3093660en
local.contributor.firstnameRaymonden
local.contributor.firstnameGregorious Satiaen
local.contributor.firstnameSandeepen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage99en
local.format.endpage105en
local.peerreviewedYesen
local.identifier.volume36en
local.identifier.issue6en
local.contributor.lastnameChiongen
local.contributor.lastnameBudhien
local.contributor.lastnameDhakalen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61375en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleCombining Sentiment Lexicons and Content-Based Features for Depression Detectionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorChiong, Raymonden
local.search.authorBudhi, Gregorious Satiaen
local.search.authorDhakal, Sandeepen
local.uneassociationNoen
dc.date.presented2021-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021en
local.year.presented2021en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-22en
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

49
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.