Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61373
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Debiaoen
dc.contributor.authorChen, Sipingen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorWang, Litingen
dc.contributor.authorDhakal, Sandeepen
dc.date.accessioned2024-07-10T01:00:13Z-
dc.date.available2024-07-10T01:00:13Z-
dc.date.issued2021-
dc.identifier.citationInternational Journal of Production Research, 59(23), p. 7246-7265en
dc.identifier.issn1366-588Xen
dc.identifier.issn0020-7543en
dc.identifier.urihttps://hdl.handle.net/1959.11/61373-
dc.description.abstract<p>This paper presents a symbiotic organism search (SOS)-based support vector regression (SVR)ensemble for predicting the printed circuit board (PCB) cycle time of surface-mount-technology(SMT) production lines. Being able to predict the PCB cycle time accurately is essential for optimis-ing the SMT production schedule. Although a machine simulator can be reliably used for single-type PCB production, it is time-consuming and often inaccurate for the simulator to be applied for highlymixed orders in multiple flexible SMT production lines. Due to the dynamic changes in both PCBorders and SMT production lines, there is a diverse set of samples, but the size of similar samples isrelatively small. An SVR model is therefore used to estimate the PCB cycle time, and the SOS algorithmis employed to optimise the SVR parameters. We assume that uncertainties during the assembly process can be captured by the characteristics of PCB and SMT lines, which are utilised as features to train the SVR model. To enhance the performance of the prediction accuracy, an SOS-SVR ensembleis proposed. Experiments based on datasets collected from a leading global electronics manufacturer confirm the efficiency of the proposed approach compared to industrial solutions currently in place and other machine learning methods.</p>en
dc.languageenen
dc.publisherTaylor & Francisen
dc.relation.ispartofInternational Journal of Production Researchen
dc.titlePredicting the printed circuit board cycle time of surface-mount-technology production lines using a symbiotic organism search-based support vector regression ensembleen
dc.typeJournal Articleen
dc.identifier.doi10.1080/00207543.2020.1837407en
local.contributor.firstnameDebiaoen
local.contributor.firstnameSipingen
local.contributor.firstnameRaymonden
local.contributor.firstnameLitingen
local.contributor.firstnameSandeepen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage7246en
local.format.endpage7265en
local.peerreviewedYesen
local.identifier.volume59en
local.identifier.issue23en
local.contributor.lastnameLien
local.contributor.lastnameChenen
local.contributor.lastnameChiongen
local.contributor.lastnameWangen
local.contributor.lastnameDhakalen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61373en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitlePredicting the printed circuit board cycle time of surface-mount-technology production lines using a symbiotic organism search-based support vector regression ensembleen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLi, Debiaoen
local.search.authorChen, Sipingen
local.search.authorChiong, Raymonden
local.search.authorWang, Litingen
local.search.authorDhakal, Sandeepen
local.uneassociationNoen
dc.date.presented2021-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021en
local.year.presented2021en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/f353cf6f-8fab-4439-8bb9-e3653e8462e9en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-23en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

4
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.