Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61369
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHe, Lijunen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorLi, Wenfengen
dc.date.accessioned2024-07-10T00:59:57Z-
dc.date.available2024-07-10T00:59:57Z-
dc.date.issued2022-
dc.identifier.citationJournal of Industrial Information Integration, v.30en
dc.identifier.issn2452-414Xen
dc.identifier.issn2467-964Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/61369-
dc.description.abstract<p>There is growing interest in energy-efficient production scheduling research because of the increasing energy shortage. However, most existing studies along this line of research have not considered the energy consumed by automated guided vehicles (AGVs) used in modern smart factories for production scheduling purposes. In this paper, we study an energy-efficient open-shop scheduling problem with multiple AGVs and deteriorating jobs. A multi-objective model with four objectives is formulated, aiming to simultaneously minimise the maximum ending time of all AGVs, the total idle time of machines and AGVs, the total tardiness of jobs, and the total energy consumption of machines and AGVs. An improved population-based multi-objective differential evolution (IMODE) algorithm is developed to solve the problem. The IMODE makes use of a problem feature-based heuristic and a mean entropy method to enhance the diversity of its initial population. A novel grey entropy parallel analysis-based fitness evaluation mechanism with reference points is adopted to evaluate the candidate solutions. To improve the local search ability of IMODE, a multi-level local search strategy is used. In the experimental study, Taguchi analysis is employed to obtain the best parameter combination. The effects of the main components of IMODE are validated via comprehensive comparison experiments. Extensive experimental results show that the IMODE is preferable to other well-known multi-objective algorithms at solving the problem being considered.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofJournal of Industrial Information Integrationen
dc.titleEnergy-efficient open-shop scheduling with multiple automated guided vehicles and deteriorating jobsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jii.2022.100387en
local.contributor.firstnameLijunen
local.contributor.firstnameRaymonden
local.contributor.firstnameWenfengen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber100387en
local.peerreviewedYesen
local.identifier.volume30en
local.contributor.lastnameHeen
local.contributor.lastnameChiongen
local.contributor.lastnameLien
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61369en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEnergy-efficient open-shop scheduling with multiple automated guided vehicles and deteriorating jobsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorHe, Lijunen
local.search.authorChiong, Raymonden
local.search.authorLi, Wenfengen
local.uneassociationNoen
dc.date.presented2022-11-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.year.presented2022en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-26en
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

10
checked on Jan 11, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.