Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61362
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFan, Zongwenen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorChiong, Fabianen
dc.date.accessioned2024-07-10T00:59:38Z-
dc.date.available2024-07-10T00:59:38Z-
dc.date.issued2022-
dc.identifier.citationApplied Intelligence, v.52, p. 2359-2368en
dc.identifier.issn1573-7497en
dc.identifier.issn0924-669Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/61362-
dc.description.abstract<p>Obesity is a critical public health problem associated with various complications and diseases. Accurate prediction of body fat is crucial for diagnosing obesity. Various measurement methods, including underwater weighing, dual energy X-ray absorptiometry, bioelectrical impedance analysis, magnetic resonance imaging, air displacement plethysmography, and near infrared interactance, have been used to assess body fat. These measurement methods, however, require special equipment associated with high-cost tests. The aim of this study is to investigate the use of machine learning-based models to accurately predict the body fat percentage. Considering the fact that off-the-shelf machine learning-based models are typically sensitive to noise data, we propose a fuzzy-weighted Gaussian kernel-based Relative Error Support Vector Machine (RE-SVM) for body fat prediction. We first design a fuzzy-weighted operation, which applies fuzzy weights to the error constraints of the RE-SVM, to alleviate the influence of noise data. Next, we also apply the fuzzy weights to improve the Gaussian kernel by considering the importance of different samples. Computational experiments and statistical tests conducted confirm that our proposed approach is able to significantly outperform other models being compared for body fat prediction across different performance metrics used. The proposed approach offers a viable alternative for diagnosing obesity when high-cost measurement methods are not available.</p>en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofApplied Intelligenceen
dc.titleA fuzzy-weighted Gaussian kernel-based machine learning approach for body fat predictionen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s10489-021-02421-3en
local.contributor.firstnameZongwenen
local.contributor.firstnameRaymonden
local.contributor.firstnameFabianen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage2359en
local.format.endpage2368en
local.peerreviewedYesen
local.identifier.volume52en
local.contributor.lastnameFanen
local.contributor.lastnameChiongen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61362en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA fuzzy-weighted Gaussian kernel-based machine learning approach for body fat predictionen
local.relation.fundingsourcenoteThe first author acknowledges the support of an Australian Government Research Training Program scholarship to carry out this research.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorFan, Zongwenen
local.search.authorChiong, Raymonden
local.search.authorChiong, Fabianen
local.uneassociationNoen
dc.date.presented2022-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.year.presented2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/199a8006-06f6-4d6b-8b99-52fe518b2136en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-26en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

12
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.