Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61361
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Zheen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zheng-pingen
dc.contributor.authorDhakal, Sandeepen
dc.date.accessioned2024-07-10T00:59:36Z-
dc.date.available2024-07-10T00:59:36Z-
dc.date.issued2022-
dc.identifier.citationJournal of Visual Communication and Image Representation, v.85, p. 1-9en
dc.identifier.issn1095-9076en
dc.identifier.issn1047-3203en
dc.identifier.urihttps://hdl.handle.net/1959.11/61361-
dc.description.abstract<p>Facial expression recognition (FER) is an active research area that has attracted much attention from both academics and practitioners of different fields. In this paper, we investigate an interesting and challenging issue in FER, where the training and testing samples are from a cross-domain dictionary. In this context, the data and feature distribution are inconsistent, and thus most of the existing recognition methods may not perform well. Given this, we propose an effective dynamic constraint representation approach based on cross-domain dictionary learning for expression recognition. The proposed approach aims to dynamically represent testing samples from source and target domains, thereby fully considering the feature elasticity in a cross-domain dictionary. We are therefore able to use the proposed approach to predict class information of unlabeled testing samples. Comprehensive experiments carried out using several public datasets confirm that the proposed approach is superior compared to some state-of-the-art methods.</p>en
dc.languageenen
dc.publisherAcademic Pressen
dc.relation.ispartofJournal of Visual Communication and Image Representationen
dc.titleA dynamic constraint representation approach based on cross-domain dictionary learning for expression recognitionen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jvcir.2022.103458en
local.contributor.firstnameZheen
local.contributor.firstnameRaymonden
local.contributor.firstnameZheng-pingen
local.contributor.firstnameSandeepen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.identifier.runningnumber103458en
local.format.startpage1en
local.format.endpage9en
local.peerreviewedYesen
local.identifier.volume85en
local.contributor.lastnameSunen
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
local.contributor.lastnameDhakalen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61361en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA dynamic constraint representation approach based on cross-domain dictionary learning for expression recognitionen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorSun, Zheen
local.search.authorChiong, Raymonden
local.search.authorHu, Zheng-pingen
local.search.authorDhakal, Sandeepen
local.uneassociationNoen
dc.date.presented2022-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.year.presented2022en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/6f688750-a0da-49e8-ae8c-e9a33c7d05c9en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-22en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

5
checked on Oct 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.