Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61351
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Naen
dc.contributor.authorChen, Yingen
dc.contributor.authorZhang, Xianyongen
dc.contributor.authorZhang, Xuhongen
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T00:59:01Z-
dc.date.available2024-07-10T00:59:01Z-
dc.date.issued2023-10-
dc.identifier.citationIEEE Transactions on Industrial Informatics, 19(10), p. 10535-10543en
dc.identifier.issn1941-0050en
dc.identifier.issn1551-3203en
dc.identifier.urihttps://hdl.handle.net/1959.11/61351-
dc.description.abstract<p>To address the problem of miss- and false detection during quality inspection of lithium-ion battery cover screen printing (LBCSP), we propose a hybrid image registration method using a point-based feature extraction algorithm and nonlinear-scale space construction. Our proposed method integrates the accelerated-KAZE algorithm with the boosted efficient binary local image descriptor (BEBLID), and is named A-BEBLID. Facing the challenge of the inevitable offset caused by machine vibration during production, we combine a nonlinear diffusion filter with a local image descriptor to extract features from images, and then use the grid-based motion statistics algorithm to remove the incorrect matching pairs. We tested the method on a custom dataset created using images taken from actual lithium-ion battery production lines, named LBCSP. We also evaluated the method on the public HPatches dataset. The average precision achieved by A-BEBLID on the LBCSP dataset is 89% (threshold: 2 pixels), with a localization error of 1.11 pixels, while on the HPatches dataset, the average precision is 73% (threshold: 2 pixels), with a localization error of 1.52 pixels. Comprehensive experimental results also showed that the proposed A-BEBLID can outperform other approaches found in the literature. The method can be further applied to other industry scenarios with similar image registration requirements.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofIEEE Transactions on Industrial Informaticsen
dc.titleA-BEBLID: A Hybrid Image Registration Method for Lithium-Ion Battery Cover Screen Printingen
dc.typeJournal Articleen
dc.identifier.doi10.1109/TII.2023.3240875en
local.contributor.firstnameNaen
local.contributor.firstnameYingen
local.contributor.firstnameXianyongen
local.contributor.firstnameXuhongen
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Lawen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailychen56@une.edu.auen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage10535en
local.format.endpage10543en
local.peerreviewedYesen
local.identifier.volume19en
local.identifier.issue10en
local.title.subtitleA Hybrid Image Registration Method for Lithium-Ion Battery Cover Screen Printingen
local.contributor.lastnameWangen
local.contributor.lastnameChenen
local.contributor.lastnameZhangen
local.contributor.lastnameZhangen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:ychen56en
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-3894-5742en
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61351en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA-BEBLIDen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorWang, Naen
local.search.authorChen, Yingen
local.search.authorZhang, Xianyongen
local.search.authorZhang, Xuhongen
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2023-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.year.presented2023en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-22en
Appears in Collections:Journal Article
School of Law
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 21, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.