Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61350
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Xinyuen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorHu, Zhongyien
dc.contributor.authorPage, Alister Jen
dc.date.accessioned2024-07-10T00:58:54Z-
dc.date.available2024-07-10T00:58:54Z-
dc.date.issued2023-08-
dc.identifier.citationComputational and Theoretical Chemistry, v.1226en
dc.identifier.issn2210-2728en
dc.identifier.issn2210-271Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/61350-
dc.description.abstract<p>Adsorption energy is an important descriptor of catalytic activity in modelling heterogeneous catalysis and is used to guide novel catalyst discovery. Previously, graph neural networks (GNNs) with global pooling have been applied to predict adsorption energy on different materials. However, adsorption energy is determined largely by the atoms near the adsorbate, and thus using local pooling methods that focus on this local chemical environment should enhance catalytic predictions. This study demonstrates the use of local environment pooling instead of the global pooling in conjunction with GNNs to predict adsorption energy. Based on the neural message passing with edge updates network and DimeNet++, we achieved mean absolute errors (MAEs) of 0.096 and 0.073 eV in predicting CO and H adsorption energies, respectively, on transition metal catalyst surfaces. Notably, these values surpass the performance of previously reported state-of-the-art machine learning models that employed the labelled site crystal graph convolutional neural network.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofComputational and Theoretical Chemistryen
dc.titleA graph neural network model with local environment pooling for predicting adsorption energiesen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.comptc.2023.114161en
local.contributor.firstnameXinyuen
local.contributor.firstnameRaymonden
local.contributor.firstnameZhongyien
local.contributor.firstnameAlister Jen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber114161en
local.peerreviewedYesen
local.identifier.volume1226en
local.contributor.lastnameLien
local.contributor.lastnameChiongen
local.contributor.lastnameHuen
local.contributor.lastnamePageen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61350en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA graph neural network model with local environment pooling for predicting adsorption energiesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLi, Xinyuen
local.search.authorChiong, Raymonden
local.search.authorHu, Zhongyien
local.search.authorPage, Alister Jen
local.uneassociationNoen
dc.date.presented2023-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.year.presented2023en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-22en
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

5
checked on Oct 26, 2024

Page view(s)

306
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.