Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61347
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiong, Raymonden
dc.contributor.authorFan, Zongwenen
dc.contributor.authorHu, Zhongyien
dc.contributor.authorDhakal, Sandeepen
dc.date.accessioned2024-07-10T00:58:46Z-
dc.date.available2024-07-10T00:58:46Z-
dc.date.issued2023-
dc.identifier.citationIEEE Transactions on Computational Social Systems, 10(5), p. 2613-2623en
dc.identifier.issn2329-924Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/61347-
dc.description.abstract<p>Financial news disclosures provide valuable information for traders and investors while making stock market investment decisions. Essential but challenging, the stock market prediction problem has attracted significant attention from both researchers and practitioners. Conventional machine learning models often fail to interpret the content of financial news due to the complexity and ambiguity of natural language used in the news. Inspired by the success of recurrent neural networks (RNNs) in sequential data processing, we propose an ensemble RNN approach (long short-term memory, gated recurrent unit, and SimpleRNN) to predict stock market movements. To avoid extracting tens of thousands of features using traditional natural language processing methods, we apply sentiment analysis and the sliding window method to extract only the most representative features. Our experimental results confirm the effectiveness of these two methods for feature extraction and show that the proposed ensemble approach is able to outperform other models under comparison.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofIEEE Transactions on Computational Social Systemsen
dc.titleA Novel Ensemble Learning Approach for Stock Market Prediction Based on Sentiment Analysis and the Sliding Window Methoden
dc.typeJournal Articleen
dc.identifier.doi10.1109/TCSS.2022.3182375en
local.contributor.firstnameRaymonden
local.contributor.firstnameZongwenen
local.contributor.firstnameZhongyien
local.contributor.firstnameSandeepen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage2613en
local.format.endpage2623en
local.peerreviewedYesen
local.identifier.volume10en
local.identifier.issue5en
local.contributor.lastnameChiongen
local.contributor.lastnameFanen
local.contributor.lastnameHuen
local.contributor.lastnameDhakalen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61347en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Novel Ensemble Learning Approach for Stock Market Prediction Based on Sentiment Analysis and the Sliding Window Methoden
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorChiong, Raymonden
local.search.authorFan, Zongwenen
local.search.authorHu, Zhongyien
local.search.authorDhakal, Sandeepen
local.uneassociationNoen
dc.date.presented2023-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.year.presented2023en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-07-24en
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

23
checked on Jan 11, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.