Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61306
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aydin, Mehmet | en |
dc.contributor.author | Barua, Prabal Datta | en |
dc.contributor.author | Chadalavada, Sreenivasulu | en |
dc.contributor.author | Dogan, Sengul | en |
dc.contributor.author | Tuncer, Turker | en |
dc.contributor.author | Chakraborty, Subrata | en |
dc.contributor.author | Acharya, Rajendra U | en |
dc.date.accessioned | 2024-07-09T04:11:37Z | - |
dc.date.available | 2024-07-09T04:11:37Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Multimedia Tools and Applications | en |
dc.identifier.issn | 1573-7721 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61306 | - |
dc.description.abstract | <p>In 2023, Turkiye faced a series of devastating earthquakes and these earthquakes afected millions of people due to damaged constructions. These earthquakes demonstrated the urgent need for advanced automated damage detection models to help people. This study introduces a novel solution to address this challenge through the AttentionPoolMobileNeXt model, derived from a modifed MobileNetV2 architecture. To rigorously evaluate the efectiveness of the model, we meticulously curated a dataset comprising instances of construction damage classifed into fve distinct classes. Upon applying this dataset to the AttentionPoolMobileNeXt model, we obtained an accuracy of 97%. In this work, we have created a dataset consisting of fve distinct damage classes, and achieved 97% test accuracy using our proposed AttentionPoolMobileNeXt model. Additionally, the study extends its impact by introducing the AttentionPoolMobileNeXt-based Deep Feature Engineering (DFE) model, further enhancing the classification performance and interpretability of the system. The presented DFE significantly increased the test classification accuracy from 90.17% to 97%, yielding improvement over the baseline model. AttentionPoolMobileNeXt and its DFE counterpart collectively contribute to advancing the state-of-the-art in automated damage detection, offering valuable insights for disaster response and recovery efforts.</p> | en |
dc.language | en | en |
dc.publisher | Springer New York LLC | en |
dc.relation.ispartof | Multimedia Tools and Applications | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s11042-024-19163-2 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Mehmet | en |
local.contributor.firstname | Prabal Datta | en |
local.contributor.firstname | Sreenivasulu | en |
local.contributor.firstname | Sengul | en |
local.contributor.firstname | Turker | en |
local.contributor.firstname | Subrata | en |
local.contributor.firstname | Rajendra U | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | schakra3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.peerreviewed | Yes | en |
local.title.subtitle | An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Aydin | en |
local.contributor.lastname | Barua | en |
local.contributor.lastname | Chadalavada | en |
local.contributor.lastname | Dogan | en |
local.contributor.lastname | Tuncer | en |
local.contributor.lastname | Chakraborty | en |
local.contributor.lastname | Acharya | en |
dc.identifier.staff | une-id:schakra3 | en |
local.profile.orcid | 0000-0002-0102-5424 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61306 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | AttentionPoolMobileNeXt | en |
local.relation.fundingsourcenote | Open access funding provided by the Scientifc and Technological Research Council of Türkiye (TÜBİTAK). | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Aydin, Mehmet | en |
local.search.author | Barua, Prabal Datta | en |
local.search.author | Chadalavada, Sreenivasulu | en |
local.search.author | Dogan, Sengul | en |
local.search.author | Tuncer, Turker | en |
local.search.author | Chakraborty, Subrata | en |
local.search.author | Acharya, Rajendra U | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2024 | en |
local.subject.for2020 | 4601 Applied computing | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
174
checked on Sep 15, 2024
This item is licensed under a Creative Commons License