Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61305
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aksoy, Gamzepelin | en |
dc.contributor.author | Cattan, Grégoire | en |
dc.contributor.author | Chakraborty, Subrata | en |
dc.contributor.author | Karabatak, Murat | en |
dc.date.accessioned | 2024-07-09T04:06:55Z | - |
dc.date.available | 2024-07-09T04:06:55Z | - |
dc.date.issued | 2024-03-05 | - |
dc.identifier.citation | Journal of medical systems, 48(1), p. 1-18 | en |
dc.identifier.issn | 1573-689X | en |
dc.identifier.issn | 0148-5598 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61305 | - |
dc.description.abstract | <p>Schizophrenia is a serious chronic mental disorder that signifcantly afects daily life. Electroencephalography (EEG), a method used to measure mental activities in the brain, is among the techniques employed in the diagnosis of schizophrenia. The symptoms of the disease typically begin in childhood and become more pronounced as one grows older. However, it can be managed with specifc treatments. Computer-aided methods can be used to achieve an early diagnosis of this illness. In this study, various machine learning algorithms and the emerging technology of quantum-based machine learning algorithm were used to detect schizophrenia using EEG signals. The principal component analysis (PCA) method was applied to process the obtained data in quantum systems. The data, which were reduced in dimensionality, were transformed into qubit form using various feature maps and provided as input to the Quantum Support Vector Machine (QSVM) algorithm. Thus, the QSVM algorithm was applied using diferent qubit numbers and diferent circuits in addition to classical machine learning algorithms. All analyses were conducted in the simulator environment of the IBM Quantum Platform. In the classifcation of this EEG dataset, it is evident that the QSVM algorithm demonstrated superior performance with a 100% success rate when using Pauli X and Pauli Z feature maps. This study serves as proof that quantum machine learning algorithms can be efectively utilized in the feld of healthcare.</p> | en |
dc.language | en | en |
dc.publisher | Springer New York LLC | en |
dc.relation.ispartof | Journal of medical systems | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Quantum Machine‑Based Decision Support System for the Detection of Schizophrenia from EEG Records | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s10916-024-02048-0 | en |
dc.identifier.pmid | 38441727 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Gamzepelin | en |
local.contributor.firstname | Grégoire | en |
local.contributor.firstname | Subrata | en |
local.contributor.firstname | Murat | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | schakra3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United State of America | en |
local.identifier.runningnumber | 29 | en |
local.format.startpage | 1 | en |
local.format.endpage | 18 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 48 | en |
local.identifier.issue | 1 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Aksoy | en |
local.contributor.lastname | Cattan | en |
local.contributor.lastname | Chakraborty | en |
local.contributor.lastname | Karabatak | en |
dc.identifier.staff | une-id:schakra3 | en |
local.profile.orcid | 0000-0002-0102-5424 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61305 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Quantum Machine‑Based Decision Support System for the Detection of Schizophrenia from EEG Records | en |
local.relation.fundingsourcenote | Open access funding provided by the Scientifc and Technological Research Council of Türkiye (TÜBİTAK) | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Aksoy, Gamzepelin | en |
local.search.author | Cattan, Grégoire | en |
local.search.author | Chakraborty, Subrata | en |
local.search.author | Karabatak, Murat | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/4b902485-d57b-4936-87c3-38f14de2ad5f | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2024 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/4b902485-d57b-4936-87c3-38f14de2ad5f | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/4b902485-d57b-4936-87c3-38f14de2ad5f | en |
local.subject.for2020 | 4601 Applied computing | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/QuantumChakraborty2024JournalArticle.pdf | Published Version | 3.3 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
2
checked on Feb 15, 2025
Page view(s)
166
checked on Aug 11, 2024
Download(s)
16
checked on Aug 11, 2024
This item is licensed under a Creative Commons License