Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61305
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAksoy, Gamzepelinen
dc.contributor.authorCattan, Grégoireen
dc.contributor.authorChakraborty, Subrataen
dc.contributor.authorKarabatak, Muraten
dc.date.accessioned2024-07-09T04:06:55Z-
dc.date.available2024-07-09T04:06:55Z-
dc.date.issued2024-03-05-
dc.identifier.citationJournal of medical systems, 48(1), p. 1-18en
dc.identifier.issn1573-689Xen
dc.identifier.issn0148-5598en
dc.identifier.urihttps://hdl.handle.net/1959.11/61305-
dc.description.abstract<p>Schizophrenia is a serious chronic mental disorder that signifcantly afects daily life. Electroencephalography (EEG), a method used to measure mental activities in the brain, is among the techniques employed in the diagnosis of schizophrenia. The symptoms of the disease typically begin in childhood and become more pronounced as one grows older. However, it can be managed with specifc treatments. Computer-aided methods can be used to achieve an early diagnosis of this illness. In this study, various machine learning algorithms and the emerging technology of quantum-based machine learning algorithm were used to detect schizophrenia using EEG signals. The principal component analysis (PCA) method was applied to process the obtained data in quantum systems. The data, which were reduced in dimensionality, were transformed into qubit form using various feature maps and provided as input to the Quantum Support Vector Machine (QSVM) algorithm. Thus, the QSVM algorithm was applied using diferent qubit numbers and diferent circuits in addition to classical machine learning algorithms. All analyses were conducted in the simulator environment of the IBM Quantum Platform. In the classifcation of this EEG dataset, it is evident that the QSVM algorithm demonstrated superior performance with a 100% success rate when using Pauli X and Pauli Z feature maps. This study serves as proof that quantum machine learning algorithms can be efectively utilized in the feld of healthcare.</p>en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofJournal of medical systemsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleQuantum Machine‑Based Decision Support System for the Detection of Schizophrenia from EEG Recordsen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s10916-024-02048-0en
dc.identifier.pmid38441727en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameGamzepelinen
local.contributor.firstnameGrégoireen
local.contributor.firstnameSubrataen
local.contributor.firstnameMuraten
local.profile.schoolSchool of Science and Technologyen
local.profile.emailschakra3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited State of Americaen
local.identifier.runningnumber29en
local.format.startpage1en
local.format.endpage18en
local.peerreviewedYesen
local.identifier.volume48en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnameAksoyen
local.contributor.lastnameCattanen
local.contributor.lastnameChakrabortyen
local.contributor.lastnameKarabataken
dc.identifier.staffune-id:schakra3en
local.profile.orcid0000-0002-0102-5424en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61305en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleQuantum Machine‑Based Decision Support System for the Detection of Schizophrenia from EEG Recordsen
local.relation.fundingsourcenoteOpen access funding provided by the Scientifc and Technological Research Council of Türkiye (TÜBİTAK)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAksoy, Gamzepelinen
local.search.authorCattan, Grégoireen
local.search.authorChakraborty, Subrataen
local.search.authorKarabatak, Muraten
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/4b902485-d57b-4936-87c3-38f14de2ad5fen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/4b902485-d57b-4936-87c3-38f14de2ad5fen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/4b902485-d57b-4936-87c3-38f14de2ad5fen
local.subject.for20204601 Applied computingen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/QuantumChakraborty2024JournalArticle.pdfPublished Version3.3 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Feb 15, 2025

Page view(s)

166
checked on Aug 11, 2024

Download(s)

16
checked on Aug 11, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons