Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61304
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nayak, Abhay B | en |
dc.contributor.author | Shah, Aastha | en |
dc.contributor.author | Maheshwari, Shishir | en |
dc.contributor.author | Anand, Vijay | en |
dc.contributor.author | Chakraborty, Subrata | en |
dc.contributor.author | Kumar, T Sunil | en |
dc.date.accessioned | 2024-07-09T04:02:14Z | - |
dc.date.available | 2024-07-09T04:02:14Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Decision Analytics Journal, v.10, p. 100420 | en |
dc.identifier.issn | 27726622 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61304 | - |
dc.description.abstract | <p>Motion artifacts reduce the quality of information in the electroencephalogram (EEG) signals. In this study, we have developed an effective approach to mitigate the motion artifacts in EEG signals by using empirical wavelet transform (EWT) technique. Firstly, we decompose EEG signals into narrowband signals called intrinsic mode functions (IMFs). These IMFs are further processed to suppress the artifacts. In our first approach, principal component analysis (PCA) is employed to suppress the noise from these decomposed IMFs. In the second approach, the IMFs with noisy components are identified using the variance measure, which are then removed to obtain the artifact-suppressed EEG signal. Our experiments are conducted on a publicly available Physionet dataset of EEG signals to demonstrate the effectiveness of our approach in suppressing motion artifacts. More importantly, the IMF-variance-based approach has provided significantly better performance than the EWT-PCA based approach. Also, the IMF-variance based approach is computationally more efficient than the EWT-PCA based approach. Our proposed IMF-variance based approach achieved an average signal to noise ratio (š„SNR) of 28.26 dB and surpassed the existing methods developed for motion artifact removal.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Decision Analytics Journal | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | An empirical wavelet transform-based approach for motion artifact removal in electroencephalogram signals | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.dajour.2024.100420 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Abhay B | en |
local.contributor.firstname | Aastha | en |
local.contributor.firstname | Shishir | en |
local.contributor.firstname | Vijay | en |
local.contributor.firstname | Subrata | en |
local.contributor.firstname | T Sunil | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | schakra3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.format.startpage | 100420 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 10 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Nayak | en |
local.contributor.lastname | Shah | en |
local.contributor.lastname | Maheshwari | en |
local.contributor.lastname | Anand | en |
local.contributor.lastname | Chakraborty | en |
local.contributor.lastname | Kumar | en |
dc.identifier.staff | une-id:schakra3 | en |
local.profile.orcid | 0000-0002-0102-5424 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61304 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | An empirical wavelet transform-based approach for motion artifact removal in electroencephalogram signals | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Nayak, Abhay B | en |
local.search.author | Shah, Aastha | en |
local.search.author | Maheshwari, Shishir | en |
local.search.author | Anand, Vijay | en |
local.search.author | Chakraborty, Subrata | en |
local.search.author | Kumar, T Sunil | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/4c62d638-4a47-4c20-9072-3d86d785a523 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2024 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/4c62d638-4a47-4c20-9072-3d86d785a523 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/4c62d638-4a47-4c20-9072-3d86d785a523 | en |
local.subject.for2020 | 4601 Applied computing | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/AnEmpiricalChakraborty2024JournalArticle.pdf | Published Version | 1.46 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
2
checked on Jan 25, 2025
Page view(s)
166
checked on Sep 8, 2024
Download(s)
8
checked on Sep 8, 2024
This item is licensed under a Creative Commons License