Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61304
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNayak, Abhay Ben
dc.contributor.authorShah, Aasthaen
dc.contributor.authorMaheshwari, Shishiren
dc.contributor.authorAnand, Vijayen
dc.contributor.authorChakraborty, Subrataen
dc.contributor.authorKumar, T Sunilen
dc.date.accessioned2024-07-09T04:02:14Z-
dc.date.available2024-07-09T04:02:14Z-
dc.date.issued2024-
dc.identifier.citationDecision Analytics Journal, v.10, p. 100420en
dc.identifier.issn27726622en
dc.identifier.urihttps://hdl.handle.net/1959.11/61304-
dc.description.abstract<p>Motion artifacts reduce the quality of information in the electroencephalogram (EEG) signals. In this study, we have developed an effective approach to mitigate the motion artifacts in EEG signals by using empirical wavelet transform (EWT) technique. Firstly, we decompose EEG signals into narrowband signals called intrinsic mode functions (IMFs). These IMFs are further processed to suppress the artifacts. In our first approach, principal component analysis (PCA) is employed to suppress the noise from these decomposed IMFs. In the second approach, the IMFs with noisy components are identified using the variance measure, which are then removed to obtain the artifact-suppressed EEG signal. Our experiments are conducted on a publicly available Physionet dataset of EEG signals to demonstrate the effectiveness of our approach in suppressing motion artifacts. More importantly, the IMF-variance-based approach has provided significantly better performance than the EWT-PCA based approach. Also, the IMF-variance based approach is computationally more efficient than the EWT-PCA based approach. Our proposed IMF-variance based approach achieved an average signal to noise ratio (š›„SNR) of 28.26 dB and surpassed the existing methods developed for motion artifact removal.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofDecision Analytics Journalen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAn empirical wavelet transform-based approach for motion artifact removal in electroencephalogram signalsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.dajour.2024.100420en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAbhay Ben
local.contributor.firstnameAasthaen
local.contributor.firstnameShishiren
local.contributor.firstnameVijayen
local.contributor.firstnameSubrataen
local.contributor.firstnameT Sunilen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailschakra3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.format.startpage100420en
local.peerreviewedYesen
local.identifier.volume10en
local.access.fulltextYesen
local.contributor.lastnameNayaken
local.contributor.lastnameShahen
local.contributor.lastnameMaheshwarien
local.contributor.lastnameAnanden
local.contributor.lastnameChakrabortyen
local.contributor.lastnameKumaren
dc.identifier.staffune-id:schakra3en
local.profile.orcid0000-0002-0102-5424en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61304en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAn empirical wavelet transform-based approach for motion artifact removal in electroencephalogram signalsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorNayak, Abhay Ben
local.search.authorShah, Aasthaen
local.search.authorMaheshwari, Shishiren
local.search.authorAnand, Vijayen
local.search.authorChakraborty, Subrataen
local.search.authorKumar, T Sunilen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/4c62d638-4a47-4c20-9072-3d86d785a523en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/4c62d638-4a47-4c20-9072-3d86d785a523en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/4c62d638-4a47-4c20-9072-3d86d785a523en
local.subject.for20204601 Applied computingen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AnEmpiricalChakraborty2024JournalArticle.pdfPublished Version1.46 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on Jan 25, 2025

Page view(s)

166
checked on Sep 8, 2024

Download(s)

8
checked on Sep 8, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons