Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61303
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFallahpoor, Maryamen
dc.contributor.authorChakraborty, Subrataen
dc.contributor.authorPradhan, Biswajeeten
dc.contributor.authorFaust, Oliveren
dc.contributor.authorBarua, Prabal Dattaen
dc.contributor.authorChegeni, Hosseinen
dc.contributor.authorAcharya, Rajendraen
dc.date.accessioned2024-07-09T03:53:12Z-
dc.date.available2024-07-09T03:53:12Z-
dc.date.issued2024-01-
dc.identifier.citationComputer methods and programs in biomedicine, v.243, p. 1-13en
dc.identifier.issn1872-7565en
dc.identifier.issn0169-2607en
dc.identifier.urihttps://hdl.handle.net/1959.11/61303-
dc.description.abstract<p>Positron emission tomography/computed tomography (PET/CT) is increasingly used in oncology, neurology, cardiology, and emerging medical fields. The success stems from the cohesive information that hybrid PET/CT imaging offers, surpassing the capabilities of individual modalities when used in isolation for different malignancies. However, manual image interpretation requires extensive disease-specific knowledge, and it is a timeconsuming aspect of physicians' daily routines. Deep learning algorithms, akin to a practitioner during training, extract knowledge from images to facilitate the diagnosis process by detecting symptoms and enhancing images. This acquired knowledge aids in supporting the diagnosis process through symptom detection and image enhancement. The available review papers on PET/CT imaging have a drawback as they either included additional modalities or examined various types of AI applications. However, there has been a lack of comprehensive investigation specifically focused on the highly specific use of AI, and deep learning, on PET/CT images. This review aims to fill that gap by investigating the characteristics of approaches used in papers that employed deep learning for PET/CT imaging. Within the review, we identified 99 studies published between 2017 and 2022 that applied deep learning to PET/CT images. We also identified the best pre-processing algorithms and the most effective deep learning models reported for PET/CT while highlighting the current limitations.</p> <p>Our review underscores the potential of deep learning (DL) in PET/CT imaging, with successful applications in lesion detection, tumor segmentation, and disease classification in both sinogram and image spaces. Common and specific pre-processing techniques are also discussed. DL algorithms excel at extracting meaningful features, and enhancing accuracy and efficiency in diagnosis. However, limitations arise from the scarcity of annotated datasets and challenges in explainability and uncertainty. Recent DL models, such as attention-based models, generative models, multi-modal models, graph convolutional networks, and transformers, are promising for improving PET/CT studies. Additionally, radiomics has garnered attention for tumor classification and predicting patient outcomes. Ongoing research is crucial to explore new applications and improve the accuracy of DL models in this rapidly evolving field.</p>en
dc.languageenen
dc.publisherElsevier Ireland Ltden
dc.relation.ispartofComputer methods and programs in biomedicineen
dc.titleDeep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image spaceen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.cmpb.2023.107880en
local.contributor.firstnameMaryamen
local.contributor.firstnameSubrataen
local.contributor.firstnameBiswajeeten
local.contributor.firstnameOliveren
local.contributor.firstnamePrabal Dattaen
local.contributor.firstnameHosseinen
local.contributor.firstnameRajendraen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailschakra3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeIrelanden
local.identifier.runningnumber107880en
local.format.startpage1en
local.format.endpage13en
local.peerreviewedYesen
local.identifier.volume243en
local.title.subtitleA comprehensive review from sinogram to image spaceen
local.contributor.lastnameFallahpooren
local.contributor.lastnameChakrabortyen
local.contributor.lastnamePradhanen
local.contributor.lastnameFausten
local.contributor.lastnameBaruaen
local.contributor.lastnameChegenien
local.contributor.lastnameAcharyaen
dc.identifier.staffune-id:schakra3en
local.profile.orcid0000-0002-0102-5424en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61303en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDeep learning techniques in PET/CT imagingen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorFallahpoor, Maryamen
local.search.authorChakraborty, Subrataen
local.search.authorPradhan, Biswajeeten
local.search.authorFaust, Oliveren
local.search.authorBarua, Prabal Dattaen
local.search.authorChegeni, Hosseinen
local.search.authorAcharya, Rajendraen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2024en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/a0e5b76a-822f-40a0-b938-a25a97c8c079en
local.subject.for20204601 Applied computingen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

11
checked on Jan 25, 2025

Page view(s)

138
checked on Sep 8, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.