Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61299
Title: Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients
Contributor(s): Allahabadi, Himanshi (author); Amann, Julia (author); Balot, Isabelle (author); Beretta, Andrea (author); Binkley, Charles (author); Bozenhard, Jonas (author); Bruneault, Frederick (author); Brusseau, James (author); Candemir, Sema (author); Cappellini, Luca Alessandro (author); Chakraborty, Subrata  (author)orcid ; Cherciu, Nicoleta (author); Cociancig, Christina (author); Coffee, Megan (author); Ek, Irene (author); Espinosa-Leal, Leonardo (author); Farina, Davide (author); Fieux-Castagnet, Genevieve (author); Frauenfelder, Thomas (author); Gallucci, Alessio (author); Giuliani, Guya (author); Golda, Adam (author); van Halem, Irmhild (author); Hildt, Elisabeth (author); Holm, Sune (author); Kararigas, Georgios (author); Krier, Sebastien A (author); Kuhne, Ulrich (author); Lizzi, Francesca (author); Madai, Vince I (author); Markus, Aniek F (author); Masis, Serg (author); Mathez, Emilie Wiinblad (author); Mureddu, Francesco (author); Neri, Emanuele (author); Osika, Walter (author); Ozols, Matiss (author); Panigutti, Cecilia (author); Parent, Brendan (author); Pratesi, Francesca (author); Moreno-Sanchez, Pedro A (author); Sartor, Giovanni (author); Savardi, Mattia (author); Signoroni, Alberto (author); Sormunen, Hanna-Maria (author); Spezzatti, Andy (author); Srivastava, Adarsh (author); Stephansen, Annette F (author); Theng, Lau Bee (author); Tithi, Jesmin Jahan (author); Tuominen, Jarno (author); Umbrello, Steven (author); Vaccher, Filippo (author); Vetter, Dennis (author); Westerlund, Magnus (author); Wurth, Renee (author); Zicari, Roberto V (author)
Publication Date: 2022-12
Open Access: Yes
DOI: 10.1109/TTS.2022.3195114
Handle Link: https://hdl.handle.net/1959.11/61299
Abstract: 

This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare and 2) to investigate the research question of what does "trustworthy AI" mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multiregional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient's lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia, Italy, since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses sociotechnical scenarios to identify ethical, technical, and domain-specific issues in the use of the AI system in the context of the pandemic.

Publication Type: Journal Article
Source of Publication: IEEE transactions on technology and society, 3(4), p. 272-289
Publisher: Institute of Electrical and Electronics Engineers
Place of Publication: United States of America
ISSN: 2637-6415
0018-9545
Fields of Research (FoR) 2020: 4601 Applied computing
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article
School of Science and Technology

Files in This Item:
2 files
File Description SizeFormat 
openpublished/AssessingChakraborty2023JournalArticle.pdfPublished Version877.33 kBAdobe PDF
Download Adobe
View/Open
Show full item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons