Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61271
Title: | Stressful summers? Torpor expression differs between high-and low-latitude populations of bats |
Contributor(s): | Czenze, Zenon J (author) ; Brigham, R Mark (author); Hickey, Anthony J R (author); Parsons, Stuart (author) |
Publication Date: | 2017 |
Early Online Version: | 2017 |
DOI: | 10.1093/jmammal/gyx071 |
Handle Link: | https://hdl.handle.net/1959.11/61271 |
Abstract: | | Variation in weather and food availability impacts the energy budgets of endotherms, with some species using torpor as an energy-saving strategy during periods of negative energy balance. We evaluated how latitudinal differences in energy balance relate to variation in torpor expression and roosting sociality between populations. We monitored summer skin temperatures (Tsk) of individuals from 2 populations of New Zealand lesser shorttailed bats (Mystacina tuberculata) separated by 6° of latitude using temperature telemetry. Although mean summer Ta was only < 1°C lower for the higher-latitude than lower-latitude population, individuals living at the higher-latitude site used torpor on 36% of observation days compared to 11% for lower-latitude bats. None of the recorded weather variables affected the propensity to enter torpor or torpor bout duration" however, the minimum torpid Tsk of bats positively correlated with daily minimum Ta. Roosts occupied by solitary bats were warmer than Ta , and temperatures within them fluctuated less than Ta. Higher-latitude individuals roosted solitarily (38%) more frequently than lower-latitude individuals (17%) and individuals from both populations exclusively used torpor while roosting solitarily. Arousals from torpor by higher-latitude bats coincided with sunset and not daily Ta maxima suggesting that bats were not fully exploiting advantages of passive rewarming. Site-specific roost choice and torpor patterns were apparent between M. tuberculata populations during summer, demonstrating that small differences in Ta differentially affect energetic strategy. The thermoregulatory behavior of species inhabiting latitudinal gradients in climate is highly plastic, likely to meet the specific challenges of their environment.
Publication Type: | Journal Article |
Source of Publication: | Journal of Mammalogy, 98(5), p. 1249-1255 |
Publisher: | Oxford University Press |
Place of Publication: | United States of America |
ISSN: | 1545-1542 0022-2372 |
Fields of Research (FoR) 2020: | 310907 Animal physiological ecology |
Peer Reviewed: | Yes |
HERDC Category Description: | C1 Refereed Article in a Scholarly Journal |
Appears in Collections: | Journal Article School of Environmental and Rural Science
|
Files in This Item:
1 files
Show full item record
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.