Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61203
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCzenze, Zenon Jen
dc.contributor.authorSmit, Benen
dc.contributor.authorvan Jaarsveld, Barryen
dc.contributor.authorFreeman, Marc Ten
dc.contributor.authorMcKechnie, Andrew Een
dc.date.accessioned2024-07-05T05:33:32Z-
dc.date.available2024-07-05T05:33:32Z-
dc.date.issued2021-01-
dc.identifier.citationFunctional Ecology, 36(1), p. 38-50en
dc.identifier.issn1365-2435en
dc.identifier.issn0269-8463en
dc.identifier.urihttps://hdl.handle.net/1959.11/61203-
dc.description.abstract<p>1. The microsites that animals occupy during the rest phase of their circadian activity cycle influence their physiology and behaviour, but relatively few studies have examined correlations between interspecific variation in thermal physiology and roost microclimate. Among bats, there is some evidence that species exposed to high roost temperatures (<i>T<sub>roost</sub></i>) possess greater heat tolerance and evaporative cooling capacity, but the small number of species for which both thermal physiology and roost microclimate data exist mean that the generality of this pattern remains unclear.</p> <p>2. Here, we test the hypothesis that bat heat tolerance and evaporative cooling capacity have co-evolved with roost preferences. We predicted that species occupying roosts poorly buffered from high outside environmental temperature exhibit higher heat tolerance and evaporative cooling capacity compared to species inhabiting buffered roosts in which <i>T<sub>roost</sub></i> remains well below outside conditions.</p> <p>3. We used flow-through respirometry to investigate thermoregulation at air temperatures (<i>T<sub>a</sub></i>) approaching and exceeding normothermic body temperature (<i>T<sub>b</sub></i>) among six species with broadly similar body mass but differing in roost microclimate (hot vs. cool roosts). We combined these data with empirical measurements of <i>T<sub>roost</sub></i> for each study population. </p> <p>4. Hot-roosting species tolerated <i>T<sub>a</sub></i> ~4°C higher than cool-roosting bats before the onset of loss of coordinated locomotion and non-regulated hyperthermia. The evaporative scope (i.e. ratio of maximum evaporative water loss [EWL] to minimum thermoneutral EWL) of hot-roosting species (16.1 ± 2.4) was substantially higher than that of cool-roosting species (5.9 ± 2.4). Maximum evaporative cooling capacities (i.e. evaporative heat loss/metabolic heat production) of hot-roosting species were >2, while the corresponding values for cool-roosting species were ≤1.</p> <p>5. The greater heat tolerance and higher evaporative cooling capacity of hotroosting species compared with those occupying cooler roosts reveal variation in bat evaporative cooling capacity correlated with roost microclimate, supporting the hypothesis that thermal physiology has co-evolved with roost preference</p>en
dc.languageenen
dc.publisherWiley-Blackwell Publishing Ltden
dc.relation.ispartofFunctional Ecologyen
dc.titleCaves, crevices and cooling capacity: Roost microclimate predicts heat tolerance in batsen
dc.typeJournal Articleen
dc.identifier.doi10.1111/1365-2435.13918en
dcterms.accessRightsBronzeen
local.contributor.firstnameZenon Jen
local.contributor.firstnameBenen
local.contributor.firstnameBarryen
local.contributor.firstnameMarc Ten
local.contributor.firstnameAndrew Een
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailzczenze@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage38en
local.format.endpage50en
local.peerreviewedYesen
local.identifier.volume36en
local.identifier.issue1en
local.title.subtitleRoost microclimate predicts heat tolerance in batsen
local.access.fulltextYesen
local.contributor.lastnameCzenzeen
local.contributor.lastnameSmiten
local.contributor.lastnamevan Jaarsvelden
local.contributor.lastnameFreemanen
local.contributor.lastnameMcKechnieen
dc.identifier.staffune-id:zczenzeen
local.profile.orcid0000-0002-1113-7593en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61203en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleCaves, crevices and cooling capacityen
local.relation.fundingsourcenoteThis work is based on research supported by National Research Foundation of South Africa (grant 119754)en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorCzenze, Zenon Jen
local.search.authorSmit, Benen
local.search.authorvan Jaarsveld, Barryen
local.search.authorFreeman, Marc Ten
local.search.authorMcKechnie, Andrew Een
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2021en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/1ba7b3e6-66d7-4357-adee-50f5236ad4cfen
local.subject.for2020310907 Animal physiological ecologyen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

11
checked on Nov 23, 2024

Page view(s)

154
checked on Sep 8, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.