Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/60050
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGong, Guiliangen
dc.contributor.authorChiong, Raymonden
dc.contributor.authorDeng, Qianwangen
dc.contributor.authorHan, Wenwuen
dc.contributor.authorZhang, Likeen
dc.contributor.authorLin, Wenhuien
dc.contributor.authorLi, Kexinen
dc.date.accessioned2024-05-27T05:12:18Z-
dc.date.available2024-05-27T05:12:18Z-
dc.date.issued2020-03-01-
dc.identifier.citationExpert Systems with Applications, v.141, p. 1-17en
dc.identifier.issn1873-6793en
dc.identifier.issn0957-4174en
dc.identifier.urihttps://hdl.handle.net/1959.11/60050-
dc.description.abstractThe classical flexible flow shop scheduling problem (FFSP) only considers machine flexibility. Thus far, the relevant literature has not studied FFSPs with worker flexibility, which is widely seen in practical manufacturing systems. Worker flexibility may greatly affect production efficiency and productivity. Furthermore, with the increase of environmental pollution and energy consumption, manufacturers require innovative methods to improve energy efficiency. In this paper, we propose an energy-efficient FFSP with worker flexibility (EFFSPW), in which the flexibility of machines and workers as well as the processing time, energy consumption and worker cost related factors are considered simultaneously. A hybrid evolutionary algorithm (HEA) is then presented to solve the proposed EFFSPW, where some effective operators and a new variable neighborhood search approach are designed. Comprehensive experiments including 54 benchmark instances of the EFFSPW are carried out, and Taguchi analysis is used to determine the best combination of key parameters for the HEA. Experimental results show that the proposed HEA can obtain better solutions for most of these benchmark instances compared to two other well-known algorithms, demonstrating its superior performance in terms of both solution quality and computational efficiency.en
dc.languageenen
dc.publisherElsevier Ltden
dc.relation.ispartofExpert Systems with Applicationsen
dc.titleEnergy-efficient flexible flow shop scheduling with worker flexibilityen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.eswa.2019.112902en
local.contributor.firstnameGuiliangen
local.contributor.firstnameRaymonden
local.contributor.firstnameQianwangen
local.contributor.firstnameWenwuen
local.contributor.firstnameLikeen
local.contributor.firstnameWenhuien
local.contributor.firstnameKexinen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber112902en
local.format.startpage1en
local.format.endpage17en
local.peerreviewedYesen
local.identifier.volume141en
local.contributor.lastnameGongen
local.contributor.lastnameChiongen
local.contributor.lastnameDengen
local.contributor.lastnameHanen
local.contributor.lastnameZhangen
local.contributor.lastnameLinen
local.contributor.lastnameLien
dc.identifier.staffune-id:rchiongen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/60050en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleEnergy-efficient flexible flow shop scheduling with worker flexibilityen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorGong, Guiliangen
local.search.authorChiong, Raymonden
local.search.authorDeng, Qianwangen
local.search.authorHan, Wenwuen
local.search.authorZhang, Likeen
local.search.authorLin, Wenhuien
local.search.authorLi, Kexinen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/6020cba2-9308-4e9c-beee-c5071044751een
local.subject.for20204602 Artificial Intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypePre-UNEen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

107
checked on Jul 6, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.