Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59965
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Yien
dc.contributor.authorMcCane, Brendanen
dc.contributor.authorMcNaughton, Neilen
dc.contributor.authorHuang, Zhiyien
dc.contributor.authorShadli, Shabahen
dc.contributor.authorNeo, Phoebeen
dc.date.accessioned2024-05-25T10:23:52Z-
dc.date.available2024-05-25T10:23:52Z-
dc.date.issued2019-
dc.identifier.citation2019 International Joint Conference on Neural Networks (IJCNN), p. 1-8en
dc.identifier.isbn9781728119854en
dc.identifier.isbn9781728119861en
dc.identifier.urihttps://hdl.handle.net/1959.11/59965-
dc.description.abstract<p>In this paper, we propose and implement an EEG-based three-dimensional Convolutional Neural Network architecture, 'AnxietyDecoder', to predict anxious personality and decode its potential biomarkers from the participants. Since Goal-Conflict-Specific-Rhythmicity (GCSR) in the EEG is a sign of an anxiety-related system working, we first propose a two-dimensional Conflict-focused CNN (2-D CNN). It simulates the GCSR extraction process but with the advantages of automatic frequency band selection and functional contrast calculation optimization, thus providing more comprehensive trait anxiety predictions. Then, to generate more targeted hierarchical features from local spatio-temporal scale to global, we propose a three-dimensional Conflict-focused CNN (3-D CNN), which simultaneously integrates information in the temporal and brain-topology-related spatial dimensions. In addition, we embed Layer-wise Relevance Propagation (LRP) into our model to reveal the essential brain areas that are correlated to anxious personality. The experimental results show that the percentage variance accounted for by our three-dimensional Conflict-focused CNN is 33%, which is almost four times higher than the previous theoretically derived GCSR contrast (7%). Meanwhile, it also outperforms the 2-D model (26%) and the t-test difference between the 3-D and 2-D models is significant (t(4) = 5.4962, p = 0.0053). What's more, the reverse engineering results provide an interpretable way to understand the prediction decision-making and participants' anxiety personality. Our proposed AnxietyDecoder not only sets a new benchmark for EEG-based anxiety prediction but also reveals essential EEG components that contribute to the decision-making, and thus sheds some light on the anxiety biomarker research.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartof2019 International Joint Conference on Neural Networks (IJCNN)en
dc.titleAnxietyDecoder: An EEG-based Anxiety Predictor using a 3-D Convolutional Neural Networken
dc.typeConference Publicationen
dc.relation.conferenceIJCNN 2019: International Joint Conference on Neural Networksen
dc.identifier.doi10.1109/IJCNN.2019.8851782en
local.contributor.firstnameYien
local.contributor.firstnameBrendanen
local.contributor.firstnameNeilen
local.contributor.firstnameZhiyien
local.contributor.firstnameShabahen
local.contributor.firstnamePhoebeen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailsshadli@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference14th - 19th July, 2019en
local.conference.placeHungaryen
local.publisher.placeUnited States of Americaen
local.format.startpage1en
local.format.endpage8en
local.title.subtitleAn EEG-based Anxiety Predictor using a 3-D Convolutional Neural Networken
local.contributor.lastnameWangen
local.contributor.lastnameMcCaneen
local.contributor.lastnameMcNaughtonen
local.contributor.lastnameHuangen
local.contributor.lastnameShadlien
local.contributor.lastnameNeoen
dc.identifier.staffune-id:sshadlien
local.profile.orcid0000-0002-3607-3469en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59965en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAnxietyDecoderen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIJCNN 2019: International Joint Conference on Neural Networks, Hungary, 14th - 19th July, 2019en
local.search.authorWang, Yien
local.search.authorMcCane, Brendanen
local.search.authorMcNaughton, Neilen
local.search.authorHuang, Zhiyien
local.search.authorShadli, Shabahen
local.search.authorNeo, Phoebeen
local.uneassociationNoen
dc.date.presented2019-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2019en
local.year.presented2019en
local.subject.for20203209 Neurosciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-15en
Appears in Collections:Conference Publication
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

6
checked on Jul 6, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.