Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/59737
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Shenghuan | en |
dc.contributor.author | McCane, Brendan | en |
dc.contributor.author | Neo, Phoebe S-H | en |
dc.contributor.author | Shadli, Shabah M | en |
dc.contributor.author | McNaughton, Neil | en |
dc.date.accessioned | 2024-05-23T01:45:57Z | - |
dc.date.available | 2024-05-23T01:45:57Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | International Joint Conference on Neural Networks, 2020 Conference Proceedings | en |
dc.identifier.issn | 2161-4407 | en |
dc.identifier.issn | 2161-4393 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/59737 | - |
dc.description.abstract | <p>Purpose: This study aims to identify EEG biomarkers that predict the level of depressive personality (where extreme scores indicate disorder), as opposed to the presence or absence of a depressive state or a depression diagnosis. Methods: Fourier features were extracted from 2-second epochs of resting state EEG and used by LSBoost to maximise the correlation with depressive trait tendencies (PID-5 depressivity index). Results: Our method accounted for 25.75% of the variance in PID-5 scores, albeit in females only. The recording channel C3 and frequencies in the gamma band were the most important contributors to the prediction. The findings are consistent with previous psychological studies and suggest that our method is a feasible strategy for developing quantitative EEG biomarkers for trait depressivity in a neuropsychologically interpretable form. We have also shown that there might be different markers for depressivity between males and females.</p> | en |
dc.language | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.ispartof | International Joint Conference on Neural Networks, 2020 Conference Proceedings | en |
dc.title | Trait depressivity prediction with EEG signals via LSBoost | en |
dc.type | Conference Publication | en |
dc.relation.conference | IJCNN 2020: International Joint Conference on Neural Networks (IJCNN) | en |
dc.identifier.doi | 10.1109/IJCNN48605.2020.9207020 | en |
local.contributor.firstname | Shenghuan | en |
local.contributor.firstname | Brendan | en |
local.contributor.firstname | Phoebe S-H | en |
local.contributor.firstname | Shabah M | en |
local.contributor.firstname | Neil | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | sshadli@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 19th - 24th July, 2020 | en |
local.conference.place | United Kindom | en |
local.publisher.place | United States of America | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Zhang | en |
local.contributor.lastname | McCane | en |
local.contributor.lastname | Neo | en |
local.contributor.lastname | Shadli | en |
local.contributor.lastname | McNaughton | en |
dc.identifier.staff | une-id:sshadli | en |
local.profile.orcid | 0000-0002-3607-3469 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/59737 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Trait depressivity prediction with EEG signals via LSBoost | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | IJCNN 2020: International Joint Conference on Neural Networks (IJCNN), United Kindom, 19th - 24th July, 2020 | en |
local.search.author | Zhang, Shenghuan | en |
local.search.author | McCane, Brendan | en |
local.search.author | Neo, Phoebe S-H | en |
local.search.author | Shadli, Shabah M | en |
local.search.author | McNaughton, Neil | en |
local.uneassociation | No | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2020 | en |
local.year.presented | 2020 | en |
local.subject.for2020 | 4203 Health services and systems | en |
local.date.start | 2020-07-19 | - |
local.date.end | 2020-07-24 | - |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-13 | en |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.