Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59737
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Shenghuanen
dc.contributor.authorMcCane, Brendanen
dc.contributor.authorNeo, Phoebe S-Hen
dc.contributor.authorShadli, Shabah Men
dc.contributor.authorMcNaughton, Neilen
dc.date.accessioned2024-05-23T01:45:57Z-
dc.date.available2024-05-23T01:45:57Z-
dc.date.issued2020-
dc.identifier.citationInternational Joint Conference on Neural Networks, 2020 Conference Proceedingsen
dc.identifier.issn2161-4407en
dc.identifier.issn2161-4393en
dc.identifier.urihttps://hdl.handle.net/1959.11/59737-
dc.description.abstract<p>Purpose: This study aims to identify EEG biomarkers that predict the level of depressive personality (where extreme scores indicate disorder), as opposed to the presence or absence of a depressive state or a depression diagnosis. Methods: Fourier features were extracted from 2-second epochs of resting state EEG and used by LSBoost to maximise the correlation with depressive trait tendencies (PID-5 depressivity index). Results: Our method accounted for 25.75% of the variance in PID-5 scores, albeit in females only. The recording channel C3 and frequencies in the gamma band were the most important contributors to the prediction. The findings are consistent with previous psychological studies and suggest that our method is a feasible strategy for developing quantitative EEG biomarkers for trait depressivity in a neuropsychologically interpretable form. We have also shown that there might be different markers for depressivity between males and females.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartofInternational Joint Conference on Neural Networks, 2020 Conference Proceedingsen
dc.titleTrait depressivity prediction with EEG signals via LSBoosten
dc.typeConference Publicationen
dc.relation.conferenceIJCNN 2020: International Joint Conference on Neural Networks (IJCNN)en
dc.identifier.doi10.1109/IJCNN48605.2020.9207020en
local.contributor.firstnameShenghuanen
local.contributor.firstnameBrendanen
local.contributor.firstnamePhoebe S-Hen
local.contributor.firstnameShabah Men
local.contributor.firstnameNeilen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailsshadli@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference19th - 24th July, 2020en
local.conference.placeUnited Kindomen
local.publisher.placeUnited States of Americaen
local.peerreviewedYesen
local.contributor.lastnameZhangen
local.contributor.lastnameMcCaneen
local.contributor.lastnameNeoen
local.contributor.lastnameShadlien
local.contributor.lastnameMcNaughtonen
dc.identifier.staffune-id:sshadlien
local.profile.orcid0000-0002-3607-3469en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59737en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleTrait depressivity prediction with EEG signals via LSBoosten
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIJCNN 2020: International Joint Conference on Neural Networks (IJCNN), United Kindom, 19th - 24th July, 2020en
local.search.authorZhang, Shenghuanen
local.search.authorMcCane, Brendanen
local.search.authorNeo, Phoebe S-Hen
local.search.authorShadli, Shabah Men
local.search.authorMcNaughton, Neilen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.year.presented2020en
local.subject.for20204203 Health services and systemsen
local.date.start2020-07-19-
local.date.end2020-07-24-
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-13en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.