Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59664
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaewmaraya, Ten
dc.contributor.authorThatsami, Nen
dc.contributor.authorTangpakonsab, Pen
dc.contributor.authorKlinkla, Ren
dc.contributor.authorKotmool, Ken
dc.contributor.authorHussain, Tanveeren
dc.date.accessioned2024-05-22T02:44:19Z-
dc.date.available2024-05-22T02:44:19Z-
dc.date.issued2023-11-30-
dc.identifier.citationJournal of Power Sources, v.585, p. 1-10en
dc.identifier.issn1873-2755en
dc.identifier.issn0378-7753en
dc.identifier.urihttps://hdl.handle.net/1959.11/59664-
dc.description.abstract<p>Ultrahigh theoretical energy density and naturally abundant electrode materials (i.e., sodium and sulfur) have rendered room-temperature sodium-sulfur batteries (Na-SBs) to be the emerging alternative for the large-scale applications. Nevertheless, rapid capacity decay caused by the shuttle effect, poor electrical conductivity of sulfur, and sluggish electrochemistry pose major obstacles to achieving commercial viability. Herein, we have proposed a new functionality of Janus-type transition metal dichalcogenides (TMDs) as cathode hosting materials to resolve the mentioned hindrances. Based on density functional theory (DFT), this work reports the interfacial interactions of sodium polysulfides (Na2Sn) and a series of Janus MSX (M = Mo, W and X = Se, Te), electronic properties, and the crucial parameters of the electrochemical reaction. Among MSX, we find that MoSTe binds with Na2Sn via chemical Na–S bonds causing the strongest binding energies (−1.18 to −2.48 eV) which are greater than do the electrolytes (−0.20 to −0.98 eV), thus effectively alleviating the shuttle effect. This immense binding is attributed to the magnified polar nature of MoSTe which intensifies the Na2Sn–MoSTe interaction. Moreover, the charge accumulation in MoSTe as donated by Na2Sn maximizes the electronic conductivity of MoSTe to improve the charge transport during the redox process. Importantly, this material facilitates the overall reversible electrochemical reactions by lowering the energy barriers of conversions among the redox intermediates in the sulfur reduction reaction (SRR), the decomposition barrier of final discharge product Na2S, and diffusion barrier of Na+ ions. Hence, Janus MoSTe offers the manifold benefits for boosting the efficiency of Na-SBs.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofJournal of Power Sourcesen
dc.titleRevealing the binding mechanism of redox intermediates in sodium–sulfur batteries by two-dimensional Janus monolayersen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jpowsour.2023.233639en
local.contributor.firstnameTen
local.contributor.firstnameNen
local.contributor.firstnamePen
local.contributor.firstnameRen
local.contributor.firstnameKen
local.contributor.firstnameTanveeren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailthussai3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber233639en
local.format.startpage1en
local.format.endpage10en
local.peerreviewedYesen
local.identifier.volume585en
local.contributor.lastnameKaewmarayaen
local.contributor.lastnameThatsamien
local.contributor.lastnameTangpakonsaben
local.contributor.lastnameKlinklaen
local.contributor.lastnameKotmoolen
local.contributor.lastnameHussainen
dc.identifier.staffune-id:thussai3en
local.profile.orcid0000-0003-1973-4584en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59664en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleRevealing the binding mechanism of redox intermediates in sodium–sulfur batteries by two-dimensional Janus monolayersen
local.relation.fundingsourcenoteThis project is funded by National Research Council of Thailand (NRCT) and Khon Kaen University (contract number N42A660440). T. Kaewmaraya acknowledges the high-performance computing facility provided by ThaiSC. This work was supported by the NCI Adapter Scheme, with computational resources provided by NCI Australia, an NCRIS-enabled capability supported by the Australian Government.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKaewmaraya, Ten
local.search.authorThatsami, Nen
local.search.authorTangpakonsab, Pen
local.search.authorKlinkla, Ren
local.search.authorKotmool, Ken
local.search.authorHussain, Tanveeren
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/4df222cd-2c56-477c-ba0e-cb618b9a617den
local.subject.for2020401807 Nanomaterialsen
local.subject.for2020510403 Condensed matter modelling and density functional theoryen
local.subject.seo2020209999 Other health not elsewhere classifieden
local.codeupdate.date2024-08-01T10:47:46.529en
local.codeupdate.epersonthussai3@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20203407 Theoretical and computational chemistryen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-05-22en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.