Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/59664
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kaewmaraya, T | en |
dc.contributor.author | Thatsami, N | en |
dc.contributor.author | Tangpakonsab, P | en |
dc.contributor.author | Klinkla, R | en |
dc.contributor.author | Kotmool, K | en |
dc.contributor.author | Hussain, Tanveer | en |
dc.date.accessioned | 2024-05-22T02:44:19Z | - |
dc.date.available | 2024-05-22T02:44:19Z | - |
dc.date.issued | 2023-11-30 | - |
dc.identifier.citation | Journal of Power Sources, v.585, p. 1-10 | en |
dc.identifier.issn | 1873-2755 | en |
dc.identifier.issn | 0378-7753 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/59664 | - |
dc.description.abstract | <p>Ultrahigh theoretical energy density and naturally abundant electrode materials (i.e., sodium and sulfur) have rendered room-temperature sodium-sulfur batteries (Na-SBs) to be the emerging alternative for the large-scale applications. Nevertheless, rapid capacity decay caused by the shuttle effect, poor electrical conductivity of sulfur, and sluggish electrochemistry pose major obstacles to achieving commercial viability. Herein, we have proposed a new functionality of Janus-type transition metal dichalcogenides (TMDs) as cathode hosting materials to resolve the mentioned hindrances. Based on density functional theory (DFT), this work reports the interfacial interactions of sodium polysulfides (Na2Sn) and a series of Janus MSX (M = Mo, W and X = Se, Te), electronic properties, and the crucial parameters of the electrochemical reaction. Among MSX, we find that MoSTe binds with Na2Sn via chemical Na–S bonds causing the strongest binding energies (−1.18 to −2.48 eV) which are greater than do the electrolytes (−0.20 to −0.98 eV), thus effectively alleviating the shuttle effect. This immense binding is attributed to the magnified polar nature of MoSTe which intensifies the Na2Sn–MoSTe interaction. Moreover, the charge accumulation in MoSTe as donated by Na2Sn maximizes the electronic conductivity of MoSTe to improve the charge transport during the redox process. Importantly, this material facilitates the overall reversible electrochemical reactions by lowering the energy barriers of conversions among the redox intermediates in the sulfur reduction reaction (SRR), the decomposition barrier of final discharge product Na2S, and diffusion barrier of Na+ ions. Hence, Janus MoSTe offers the manifold benefits for boosting the efficiency of Na-SBs.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Journal of Power Sources | en |
dc.title | Revealing the binding mechanism of redox intermediates in sodium–sulfur batteries by two-dimensional Janus monolayers | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.jpowsour.2023.233639 | en |
local.contributor.firstname | T | en |
local.contributor.firstname | N | en |
local.contributor.firstname | P | en |
local.contributor.firstname | R | en |
local.contributor.firstname | K | en |
local.contributor.firstname | Tanveer | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | thussai3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | The Netherlands | en |
local.identifier.runningnumber | 233639 | en |
local.format.startpage | 1 | en |
local.format.endpage | 10 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 585 | en |
local.contributor.lastname | Kaewmaraya | en |
local.contributor.lastname | Thatsami | en |
local.contributor.lastname | Tangpakonsab | en |
local.contributor.lastname | Klinkla | en |
local.contributor.lastname | Kotmool | en |
local.contributor.lastname | Hussain | en |
dc.identifier.staff | une-id:thussai3 | en |
local.profile.orcid | 0000-0003-1973-4584 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/59664 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Revealing the binding mechanism of redox intermediates in sodium–sulfur batteries by two-dimensional Janus monolayers | en |
local.relation.fundingsourcenote | This project is funded by National Research Council of Thailand (NRCT) and Khon Kaen University (contract number N42A660440). T. Kaewmaraya acknowledges the high-performance computing facility provided by ThaiSC. This work was supported by the NCI Adapter Scheme, with computational resources provided by NCI Australia, an NCRIS-enabled capability supported by the Australian Government. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Kaewmaraya, T | en |
local.search.author | Thatsami, N | en |
local.search.author | Tangpakonsab, P | en |
local.search.author | Klinkla, R | en |
local.search.author | Kotmool, K | en |
local.search.author | Hussain, Tanveer | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/4df222cd-2c56-477c-ba0e-cb618b9a617d | en |
local.subject.for2020 | 401807 Nanomaterials | en |
local.subject.for2020 | 510403 Condensed matter modelling and density functional theory | en |
local.subject.seo2020 | 209999 Other health not elsewhere classified | en |
local.codeupdate.date | 2024-08-01T10:47:46.529 | en |
local.codeupdate.eperson | thussai3@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 3407 Theoretical and computational chemistry | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.date.moved | 2024-05-22 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.