Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWhite, Ryanen
dc.contributor.authorPalczewska, Annaen
dc.contributor.authorWeaving, Danen
dc.contributor.authorCollins, Neilen
dc.contributor.authorJones, Benen
dc.date.accessioned2024-05-20T23:08:25Z-
dc.date.available2024-05-20T23:08:25Z-
dc.date.issued2022-
dc.identifier.citationJournal of Sports Sciences, 40(2), p. 164-174en
dc.identifier.issn1466-447Xen
dc.identifier.issn0264-0414en
dc.identifier.urihttps://hdl.handle.net/1959.11/59542-
dc.description.abstract<p>Athlete external load is typically quantified as volumes or discretised threshold values using distance, speed and time. A framework accounting for the movement sequences of athletes has previously been proposed using radio frequency data. This study developed a framework to identify sequential move-ment sequences using GPS-derived spatiotemporal data in team-sports and establish its stability. Thirteen rugby league players during one match were analysed to demonstrate the application of the framework. The framework (Sequential Movement Pattern-mining [SMP]) applies techniques to analyse i) geospatial data (i.e., decimal degree latitude and longitude), ii) determine players turning angles, iii) improve movement descriptor assignment, thus improving movement unit formation and iv) improve the classification and identification of players' frequent SMP. The SMP framework allows for sub- sequences of movement units to be condensed, removing repeated elements, which offers a novel technique for the quantification of similarities or dis-similarities between players and playing positions. The SMP framework provides a robust and stable method that allows, for the first time the analysis of GPS-derived data and identifies the frequent SMP of field-based team-sport athletes. The application of the SMP framework in practice could optimise the outcomes of training of field-based team-sport athletes by improving training specificity.</p>en
dc.languageenen
dc.publisherRoutledgeen
dc.relation.ispartofJournal of Sports Sciencesen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleSequential movement pattern-mining (SMP) in field-based team-sport: A framework for quantifying spatiotemporal data and improve training specificity?en
dc.typeJournal Articleen
dc.identifier.doi10.1080/02640414.2021.1982484en
dcterms.accessRightsUNE Greenen
dc.subject.keywordssport analyticsen
dc.subject.keywordsSport Sciencesen
dc.subject.keywordsperformance analysisen
dc.subject.keywordsGlobal positioning systemsen
dc.subject.keywordstime-motion analysisen
dc.subject.keywordsteam sportsen
local.contributor.firstnameRyanen
local.contributor.firstnameAnnaen
local.contributor.firstnameDanen
local.contributor.firstnameNeilen
local.contributor.firstnameBenen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailbjones64@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage164en
local.format.endpage174en
local.peerreviewedYesen
local.identifier.volume40en
local.identifier.issue2en
local.title.subtitleA framework for quantifying spatiotemporal data and improve training specificity?en
local.access.fulltextYesen
local.contributor.lastnameWhiteen
local.contributor.lastnamePalczewskaen
local.contributor.lastnameWeavingen
local.contributor.lastnameCollinsen
local.contributor.lastnameJonesen
dc.identifier.staffune-id:bjones64en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59542en
local.date.onlineversion2021-09-27-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleSequential movement pattern-mining (SMP) in field-based team-sporten
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorWhite, Ryanen
local.search.authorPalczewska, Annaen
local.search.authorWeaving, Danen
local.search.authorCollins, Neilen
local.search.authorJones, Benen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/1faa6b73-8766-485d-afab-49b8814aa333en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2021en
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/1faa6b73-8766-485d-afab-49b8814aa333en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/1faa6b73-8766-485d-afab-49b8814aa333en
local.subject.for20204207 Sports science and exerciseen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/SequentialJones2022JournalArticle.pdfPublished version3.74 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons