Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/59338
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ozkaya, Suat Gokhan | en |
dc.contributor.author | Baygin, Mehmet | en |
dc.contributor.author | Barua, Prabal Datta | en |
dc.contributor.author | Tuncer, Turker | en |
dc.contributor.author | Dogan, Sengul | en |
dc.contributor.author | Chakraborty, Subrata | en |
dc.contributor.author | Rajendra Acharya, U | en |
dc.date.accessioned | 2024-05-16T05:42:45Z | - |
dc.date.available | 2024-05-16T05:42:45Z | - |
dc.date.issued | 2024-03-15 | - |
dc.identifier.citation | Expert Systems with Applications, 238(Part D), p. 1-13 | en |
dc.identifier.issn | 1873-6793 | en |
dc.identifier.issn | 0957-4174 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/59338 | - |
dc.description.abstract | <p><i>Background:</i> Seismic signals are useful for earthquake detection and classification. Therefore, various artificial intelligence (AI) models have been used with seismic signals to develop automated earthquake detection systems. Our primary goal is to present an accurate feature engineering model for earthquake detection and classification using seismic signals. </p> <p><i>Material and model:</i> We have used a public dataset in this work containing three categories: (1) noise, (2) P waves, and (3) S waves. P and S waves are used to define earthquakes. We have presented two applied use cases using this dataset: (i) earthquake detection and (ii) wave classification. In this work, a new textural feature extractor has been presented by using a graph pattern similar to a butterfly. Thus, this feature extraction function is named Butterfly pattern (BFPat). We have created a new feature engineering architecture by deploying BFPat, statistics, and wavelet packet decomposition (WPD) functions. The recommended BFPat and statistics have been applied to the wavelet bands created by WPD and the raw seismic signals. Multilevel features have been extracted from both frequency and space domains. The used dataset contains signals with three channels. Using these three channels, seven signals have been created. Seven feature vectors have been created from 7 input signals used in this study. The most meaningful/informative features from the generated feature set are then selected using the iterative neighborhood component analysis feature selector method. Seven chosen feature vectors have been considered as inputs of the two shallow classifiers: k nearest neighbors (kNN) and support vector machine (SVM). A total of 14 (=7 × 2) results have been obtained in the classification phase. A majority voting process was applied in the last phase to choose the best results and improve the classification performance.</p> <p><i>Results:</i> We have presented two use cases for our new BFPat method in this work to obtain superior results. Our model reached an accuracy of 99.58% in detecting the earthquake detection and 93.13% accuracy in 3-class classifications of waves. </p> <p><i>Conclusions:</i> Our recommended model has achieved over 90% classification performance for both cases. Also, we have presented the most valuable channel and combinations in our work. Our developed system is ready to be tested with a bigger database. </p> | en |
dc.language | en | en |
dc.publisher | Elsevier Ltd | en |
dc.relation.ispartof | Expert Systems with Applications | en |
dc.title | An automated earthquake classification model based on a new butterfly pattern using seismic signals | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.eswa.2023.122079 | en |
local.contributor.firstname | Suat Gokhan | en |
local.contributor.firstname | Mehmet | en |
local.contributor.firstname | Prabal Datta | en |
local.contributor.firstname | Turker | en |
local.contributor.firstname | Sengul | en |
local.contributor.firstname | Subrata | en |
local.contributor.firstname | U | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | schakra3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.identifier.runningnumber | 122079 | en |
local.format.startpage | 1 | en |
local.format.endpage | 13 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 238 | en |
local.identifier.issue | Part D | en |
local.contributor.lastname | Ozkaya | en |
local.contributor.lastname | Baygin | en |
local.contributor.lastname | Barua | en |
local.contributor.lastname | Tuncer | en |
local.contributor.lastname | Dogan | en |
local.contributor.lastname | Chakraborty | en |
local.contributor.lastname | Rajendra Acharya | en |
dc.identifier.staff | une-id:schakra3 | en |
local.profile.orcid | 0000-0002-0102-5424 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/59338 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | An automated earthquake classification model based on a new butterfly pattern using seismic signals | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Ozkaya, Suat Gokhan | en |
local.search.author | Baygin, Mehmet | en |
local.search.author | Barua, Prabal Datta | en |
local.search.author | Tuncer, Turker | en |
local.search.author | Dogan, Sengul | en |
local.search.author | Chakraborty, Subrata | en |
local.search.author | Rajendra Acharya, U | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2024 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/db525b70-c716-4838-ad59-9c93d014749b | en |
local.subject.seo2020 | 280115 Expanding knowledge in the information and computing sciences | en |
local.codeupdate.date | 2024-11-01T10:06:12.410 | en |
local.codeupdate.eperson | schakra3@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 4601 Applied computing | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-05-16 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.