Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59210
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReza, Md Tanzimen
dc.contributor.authorDipto, Shakib Mahmuden
dc.contributor.authorParvez, Mohammad Zaviden
dc.contributor.authorBarua, Prabal Dattaen
dc.contributor.authorChakraborty, Subrataen
dc.date.accessioned2024-05-13T01:41:23Z-
dc.date.available2024-05-13T01:41:23Z-
dc.date.issued2023-05-
dc.identifier.citationProceedings of the 2023 International Conference on Advances in Computing Research (ACR’23) Lecture Notes in Networks and Systems, 2023, p. 246-256en
dc.identifier.isbn9783031337420en
dc.identifier.urihttps://hdl.handle.net/1959.11/59210-
dc.description.abstract<p>Red Blood Cells (RBCs) play an important role in the welfare of human being as it helps to transport oxygen throughout the body. Different RBC-related diseases, for example, variants of anemias, can disrupt regular functionality and become life-threatening. Classification systems leveraging CNNs can be useful for automated diagnosis of RBC deformation, but the system can be quite resource-intensive in case the CNN architecture is large. The proposed approach provides an empirical analysis of the application of 28 and 45-layer Binarized DenseNet for identifying RBC deformations. According to our investigation, the accuracy of the 45-layer binarized variant can reach 93–94%, which is on par with the results of the conventional variant, which also achieves 93–94% accuracy. The 23-layer binarized variant, while not on par with the regular variant, also gets very close in terms of accuracy. Meanwhile, the 45-layer and 28-layer binarized variant only requires 9% and 11% storage space respectively to that of regular DenseNet, with potentially faster inference time. This optimized model can be useful since it can be easily deployed in resource-constrained devices, such as mobile phones and cheap embedded systems.</p>en
dc.languageenen
dc.publisherSpringer Natureen
dc.relation.ispartofProceedings of the 2023 International Conference on Advances in Computing Research (ACR’23) Lecture Notes in Networks and Systems, 2023en
dc.titleA Power Efficient Solution to Determine Red Blood Cell Deformation Type Using Binarized DenseNeten
dc.typeConference Publicationen
dc.relation.conferenceInternational Conference on Advances in Computing Research (ACR’23)en
dc.identifier.doi10.1007/978-3-031-33743-7_21en
local.contributor.firstnameMd Tanzimen
local.contributor.firstnameShakib Mahmuden
local.contributor.firstnameMohammad Zaviden
local.contributor.firstnamePrabal Dattaen
local.contributor.firstnameSubrataen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailschakra3@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference08 - 10 May, 2023en
local.conference.placeOrlando, United States Of Americaen
local.publisher.placeSwitzerlanden
local.format.startpage246en
local.format.endpage256en
local.peerreviewedYesen
local.contributor.lastnameRezaen
local.contributor.lastnameDiptoen
local.contributor.lastnameParvezen
local.contributor.lastnameBaruaen
local.contributor.lastnameChakrabortyen
dc.identifier.staffune-id:schakra3en
local.profile.orcid0000-0002-0102-5424en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59210en
local.date.onlineversion2023-05-27-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Power Efficient Solution to Determine Red Blood Cell Deformation Type Using Binarized DenseNeten
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsInternational Conference on Advances in Computing Research (ACR’23), Orlando, United States Of America, 08 - 10 May, 2023en
local.search.authorReza, Md Tanzimen
local.search.authorDipto, Shakib Mahmuden
local.search.authorParvez, Mohammad Zaviden
local.search.authorBarua, Prabal Dattaen
local.search.authorChakraborty, Subrataen
local.uneassociationYesen
dc.date.presented2023-05-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023en
local.year.published2023en
local.year.presented2023en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/342e62b8-a8f1-4191-b081-11cdb0b311b0en
local.subject.for20204601 Applied computingen
local.date.start2023-05-08-
local.date.end2023-05-10-
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-06-13en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

1
checked on Feb 15, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.