Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/59210
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Reza, Md Tanzim | en |
dc.contributor.author | Dipto, Shakib Mahmud | en |
dc.contributor.author | Parvez, Mohammad Zavid | en |
dc.contributor.author | Barua, Prabal Datta | en |
dc.contributor.author | Chakraborty, Subrata | en |
dc.date.accessioned | 2024-05-13T01:41:23Z | - |
dc.date.available | 2024-05-13T01:41:23Z | - |
dc.date.issued | 2023-05 | - |
dc.identifier.citation | Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23) Lecture Notes in Networks and Systems, 2023, p. 246-256 | en |
dc.identifier.isbn | 9783031337420 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/59210 | - |
dc.description.abstract | <p>Red Blood Cells (RBCs) play an important role in the welfare of human being as it helps to transport oxygen throughout the body. Different RBC-related diseases, for example, variants of anemias, can disrupt regular functionality and become life-threatening. Classification systems leveraging CNNs can be useful for automated diagnosis of RBC deformation, but the system can be quite resource-intensive in case the CNN architecture is large. The proposed approach provides an empirical analysis of the application of 28 and 45-layer Binarized DenseNet for identifying RBC deformations. According to our investigation, the accuracy of the 45-layer binarized variant can reach 93–94%, which is on par with the results of the conventional variant, which also achieves 93–94% accuracy. The 23-layer binarized variant, while not on par with the regular variant, also gets very close in terms of accuracy. Meanwhile, the 45-layer and 28-layer binarized variant only requires 9% and 11% storage space respectively to that of regular DenseNet, with potentially faster inference time. This optimized model can be useful since it can be easily deployed in resource-constrained devices, such as mobile phones and cheap embedded systems.</p> | en |
dc.language | en | en |
dc.publisher | Springer Nature | en |
dc.relation.ispartof | Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23) Lecture Notes in Networks and Systems, 2023 | en |
dc.title | A Power Efficient Solution to Determine Red Blood Cell Deformation Type Using Binarized DenseNet | en |
dc.type | Conference Publication | en |
dc.relation.conference | International Conference on Advances in Computing Research (ACR’23) | en |
dc.identifier.doi | 10.1007/978-3-031-33743-7_21 | en |
local.contributor.firstname | Md Tanzim | en |
local.contributor.firstname | Shakib Mahmud | en |
local.contributor.firstname | Mohammad Zavid | en |
local.contributor.firstname | Prabal Datta | en |
local.contributor.firstname | Subrata | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | schakra3@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 08 - 10 May, 2023 | en |
local.conference.place | Orlando, United States Of America | en |
local.publisher.place | Switzerland | en |
local.format.startpage | 246 | en |
local.format.endpage | 256 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Reza | en |
local.contributor.lastname | Dipto | en |
local.contributor.lastname | Parvez | en |
local.contributor.lastname | Barua | en |
local.contributor.lastname | Chakraborty | en |
dc.identifier.staff | une-id:schakra3 | en |
local.profile.orcid | 0000-0002-0102-5424 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/59210 | en |
local.date.onlineversion | 2023-05-27 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A Power Efficient Solution to Determine Red Blood Cell Deformation Type Using Binarized DenseNet | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | International Conference on Advances in Computing Research (ACR’23), Orlando, United States Of America, 08 - 10 May, 2023 | en |
local.search.author | Reza, Md Tanzim | en |
local.search.author | Dipto, Shakib Mahmud | en |
local.search.author | Parvez, Mohammad Zavid | en |
local.search.author | Barua, Prabal Datta | en |
local.search.author | Chakraborty, Subrata | en |
local.uneassociation | Yes | en |
dc.date.presented | 2023-05 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2023 | en |
local.year.published | 2023 | en |
local.year.presented | 2023 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/342e62b8-a8f1-4191-b081-11cdb0b311b0 | en |
local.subject.for2020 | 4601 Applied computing | en |
local.date.start | 2023-05-08 | - |
local.date.end | 2023-05-10 | - |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.date.moved | 2024-06-13 | en |
Appears in Collections: | Conference Publication School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
1
checked on Feb 15, 2025
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.