Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/59109
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jason, J Ian | en |
dc.contributor.author | Pal, Yash | en |
dc.contributor.author | Anees, P | en |
dc.contributor.author | Lee, Hoonkyung | en |
dc.contributor.author | Kaewmaraya, Thanayut | en |
dc.contributor.author | Hussain, Tanveer | en |
dc.contributor.author | Panigrahi, Puspamitra | en |
dc.date.accessioned | 2024-05-08T06:07:45Z | - |
dc.date.available | 2024-05-08T06:07:45Z | - |
dc.date.issued | 2024-01-02 | - |
dc.identifier.citation | International Journal of Hydrogen Energy, v.50, p. 455-463 | en |
dc.identifier.issn | 1879-3487 | en |
dc.identifier.issn | 0360-3199 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/59109 | - |
dc.description.abstract | <p>Experimental synthesis of two-dimensional boron hydride monolayer (BH-ML) (<i>J. Am. Chem. Soc. 2017, 139, 13,761</i>) has motivated us to explore its application in clean energy storage. We have performed first-principles calculations based on spin-polarized density functional theory (DFT) to investigate the ground-state geometries, electronic structures, metal doping mechanism and hydrogen (H<sub>2</sub>) storage propensities of BH-ML. Pristine BH-ML barely binds H<sub>2</sub>, however the introduction of selected light metal dopants, such as Na, Ca, and Sc, improved the H<sub>2</sub> adsorption mechanism tremendously. Binding energies of dopants under maximum doping concentration are found as −1.51, −2.49, and −4.54 eV for Na, Ca, and Sc, respectively, which are strong enough to ensure their uniform distribution over BH-ML without clustering. Each dopant donated bulk of its charge to BH-ML and transforms into cation and anchored multiple H2 molecules through electrostatic and van der Waals interactions. We have found that a maximum of 24H<sub>2</sub> molecules could be adsorbed on BH-ML decorated with four metal dopants of Na, Ca, and Sc. Average adsorption energies of H<sub>2</sub> are found within desirable range. Our results show that Na, Ca, and Sc decorated BH-ML could reach to exceptionally high H2 storage capacities of 14.84, 12.28, and 11.70%, respectively, which easily surpass the US Department of Energy (DOE) target of 5.50 wt% by 2025. We have further applied thermodynamic analysis to explain the H2 storage proficiencies at practical conditions of temperatures and pressures. Our report confirms that BH-ML decorated with light metal dopants are ideal option for high-capacity H<sub>2</sub> storage applications.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier Ltd | en |
dc.relation.ispartof | International Journal of Hydrogen Energy | en |
dc.title | Defects induced metallized boron hydride monolayers as high-performance hydrogen storage architecture | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.ijhydene.2023.07.195 | en |
local.contributor.firstname | J Ian | en |
local.contributor.firstname | Yash | en |
local.contributor.firstname | P | en |
local.contributor.firstname | Hoonkyung | en |
local.contributor.firstname | Thanayut | en |
local.contributor.firstname | Tanveer | en |
local.contributor.firstname | Puspamitra | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | thussai3@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 455 | en |
local.format.endpage | 463 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 50 | en |
local.contributor.lastname | Jason | en |
local.contributor.lastname | Pal | en |
local.contributor.lastname | Anees | en |
local.contributor.lastname | Lee | en |
local.contributor.lastname | Kaewmaraya | en |
local.contributor.lastname | Hussain | en |
local.contributor.lastname | Panigrahi | en |
dc.identifier.staff | une-id:thussai3 | en |
local.profile.orcid | 0000-0003-1973-4584 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/59109 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Defects induced metallized boron hydride monolayers as high-performance hydrogen storage architecture | en |
local.relation.fundingsourcenote | PP is indebted to the CENCON for financial support. This work was supported by the NCI Adapter Scheme, with computational resources provided by NCI Australia, an NCRISenabled capability supported by the Australian Government. This research was supported by the Fundamental Fund of Khon Kaen University. The research has received funding support from the National Science, Research, and Innovation Fund (NSRF). The high-performance computing facility was provided by ThaiSC. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Jason, J Ian | en |
local.search.author | Pal, Yash | en |
local.search.author | Anees, P | en |
local.search.author | Lee, Hoonkyung | en |
local.search.author | Kaewmaraya, Thanayut | en |
local.search.author | Hussain, Tanveer | en |
local.search.author | Panigrahi, Puspamitra | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2024 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/58065f42-940c-4be7-9f83-c51ff797608d | en |
local.subject.for2020 | 510403 Condensed matter modelling and density functional theory | en |
local.subject.for2020 | 340701 Computational chemistry | en |
local.subject.seo2020 | 170899 Renewable energy not elsewhere classified | en |
local.subject.seo2020 | tbd | en |
local.codeupdate.date | 2024-08-01T10:34:33.642 | en |
local.codeupdate.eperson | thussai3@une.edu.au | en |
local.codeupdate.finalised | true | en |
local.original.for2020 | 3407 Theoretical and computational chemistry | en |
local.original.seo2020 | tbd | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-05-08 | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
1
checked on Jun 1, 2024
Page view(s)
138
checked on May 12, 2024
Download(s)
2
checked on May 12, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.