Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58848
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCostilla, Ren
dc.contributor.authorZeng, Jen
dc.contributor.authorAl Kalaldeh, Men
dc.contributor.authorSwaminathan, Men
dc.contributor.authorGibson, J Pen
dc.contributor.authorDucrocq, Ven
dc.contributor.authorHayes, B Jen
dc.date.accessioned2024-05-01T06:55:38Z-
dc.date.available2024-05-01T06:55:38Z-
dc.date.issued2023-12-
dc.identifier.citationJournal of Dairy Science, 106(12), p. 9125-9135en
dc.identifier.issn1525-3198en
dc.identifier.issn0022-0302en
dc.identifier.urihttps://hdl.handle.net/1959.11/58848-
dc.description.abstract<p>The productivity of smallholder dairy farms is very low in developing countries. Important genetic gains could be realized using genomic selection, but genetic evaluations need to be tailored for lack of pedigree information and very small farm sizes. To accommodate this situation, we propose a flexible Bayesian model for the genetic evaluation of milk yield, which allows us to simultaneously account for nongenetic random effects for farms and varying SNP variance (BayesR model). First, we used simulations based on real genotype data from Indian crossbred dairy cattle to demonstrate that the proposed model can separate the true genetic and nongenetic parameters even for small farm sizes (2 cows on average) although with high standard errors in scenarios with low heritability. The accuracy of genomic genetic evaluation increased until farm size was approximately 5. We then applied the model to real data from 4,655 crossbred cows with 106,109 monthly test day milk records and 689,750 autosomal SNPs. We estimated a heritability of 0.16 (0.04) for milk yield and using cross-validation, a genomic estimated breeding value (GEBV) accuracy of 0.45 and bias (regression of phenotype on GEBV) of 1.04 (0.26). Estimated genetic parameters were very similar using BayesR, BayesC, and genomic BLUP approaches. Candidate genes near the top variants, <i>IMMP2L</i> and <i>ARHGEF2</i>, have been previously associated with milk protein composition, mastitis resistance, and milk cholesterol content. The estimated heritability and GEBV accuracy for milk yield are much lower than those from intensive or pasture-based systems in many countries. Further increases in the number of phenotyped and genotyped animals in farms with at least 2 cows (preferably 3–5, to allow for dropout of cows) are needed to improve the estimation of genetic effects in these smallholder dairy farms.</p>en
dc.languageenen
dc.publisherElsevier Incen
dc.relation.ispartofJournal of Dairy Scienceen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleDeveloping flexible models for genetic evaluations in smallholder crossbred dairy farmsen
dc.typeJournal Articleen
dc.identifier.doi10.3168/jds.2022-23135en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameRen
local.contributor.firstnameJen
local.contributor.firstnameMen
local.contributor.firstnameMen
local.contributor.firstnameJ Pen
local.contributor.firstnameVen
local.contributor.firstnameB Jen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailmalkala2@une.edu.auen
local.profile.emailjgibson5@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage9125en
local.format.endpage9135en
local.peerreviewedYesen
local.identifier.volume106en
local.identifier.issue12en
local.access.fulltextYesen
local.contributor.lastnameCostillaen
local.contributor.lastnameZengen
local.contributor.lastnameAl Kalaldehen
local.contributor.lastnameSwaminathanen
local.contributor.lastnameGibsonen
local.contributor.lastnameDucrocqen
local.contributor.lastnameHayesen
dc.identifier.staffune-id:malkala2en
dc.identifier.staffune-id:jgibson5en
local.profile.orcid0000-0002-3206-6421en
local.profile.orcid0000-0003-0371-2401en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58848en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDeveloping flexible models for genetic evaluations in smallholder crossbred dairy farmsen
local.relation.fundingsourcenoteThis research was supported by the Bill and Melinda Gates Foundation (OP1112185; Seattle, WA). We gratefully acknowledge the support of the Animal Breeding and Genetics team of BAIF Development Research Foundation (Maharashtra, India). The authors have not stated any conflicts of interest.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorCostilla, Ren
local.search.authorZeng, Jen
local.search.authorAl Kalaldeh, Men
local.search.authorSwaminathan, Men
local.search.authorGibson, J Pen
local.search.authorDucrocq, Ven
local.search.authorHayes, B Jen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/ee0e44eb-a6a9-4c21-9dd7-6c4a29f82cb8en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/ee0e44eb-a6a9-4c21-9dd7-6c4a29f82cb8en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/ee0e44eb-a6a9-4c21-9dd7-6c4a29f82cb8en
local.subject.for20203003 Animal productionen
local.subject.seo2020100402 Dairy cattleen
local.original.for20203003 Animal productionen
local.original.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-05-01en
Appears in Collections:Journal Article
School of Environmental and Rural Science
Files in This Item:
2 files
File Description SizeFormat 
openpublished/DevelopingAlKaladehGibson2023JournalArticle.pdfPublished Version2.51 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons