Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/58848
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Costilla, R | en |
dc.contributor.author | Zeng, J | en |
dc.contributor.author | Al Kalaldeh, M | en |
dc.contributor.author | Swaminathan, M | en |
dc.contributor.author | Gibson, J P | en |
dc.contributor.author | Ducrocq, V | en |
dc.contributor.author | Hayes, B J | en |
dc.date.accessioned | 2024-05-01T06:55:38Z | - |
dc.date.available | 2024-05-01T06:55:38Z | - |
dc.date.issued | 2023-12 | - |
dc.identifier.citation | Journal of Dairy Science, 106(12), p. 9125-9135 | en |
dc.identifier.issn | 1525-3198 | en |
dc.identifier.issn | 0022-0302 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/58848 | - |
dc.description.abstract | <p>The productivity of smallholder dairy farms is very low in developing countries. Important genetic gains could be realized using genomic selection, but genetic evaluations need to be tailored for lack of pedigree information and very small farm sizes. To accommodate this situation, we propose a flexible Bayesian model for the genetic evaluation of milk yield, which allows us to simultaneously account for nongenetic random effects for farms and varying SNP variance (BayesR model). First, we used simulations based on real genotype data from Indian crossbred dairy cattle to demonstrate that the proposed model can separate the true genetic and nongenetic parameters even for small farm sizes (2 cows on average) although with high standard errors in scenarios with low heritability. The accuracy of genomic genetic evaluation increased until farm size was approximately 5. We then applied the model to real data from 4,655 crossbred cows with 106,109 monthly test day milk records and 689,750 autosomal SNPs. We estimated a heritability of 0.16 (0.04) for milk yield and using cross-validation, a genomic estimated breeding value (GEBV) accuracy of 0.45 and bias (regression of phenotype on GEBV) of 1.04 (0.26). Estimated genetic parameters were very similar using BayesR, BayesC, and genomic BLUP approaches. Candidate genes near the top variants, <i>IMMP2L</i> and <i>ARHGEF2</i>, have been previously associated with milk protein composition, mastitis resistance, and milk cholesterol content. The estimated heritability and GEBV accuracy for milk yield are much lower than those from intensive or pasture-based systems in many countries. Further increases in the number of phenotyped and genotyped animals in farms with at least 2 cows (preferably 3–5, to allow for dropout of cows) are needed to improve the estimation of genetic effects in these smallholder dairy farms.</p> | en |
dc.language | en | en |
dc.publisher | Elsevier Inc | en |
dc.relation.ispartof | Journal of Dairy Science | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Developing flexible models for genetic evaluations in smallholder crossbred dairy farms | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3168/jds.2022-23135 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | R | en |
local.contributor.firstname | J | en |
local.contributor.firstname | M | en |
local.contributor.firstname | M | en |
local.contributor.firstname | J P | en |
local.contributor.firstname | V | en |
local.contributor.firstname | B J | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | malkala2@une.edu.au | en |
local.profile.email | jgibson5@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 9125 | en |
local.format.endpage | 9135 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 106 | en |
local.identifier.issue | 12 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Costilla | en |
local.contributor.lastname | Zeng | en |
local.contributor.lastname | Al Kalaldeh | en |
local.contributor.lastname | Swaminathan | en |
local.contributor.lastname | Gibson | en |
local.contributor.lastname | Ducrocq | en |
local.contributor.lastname | Hayes | en |
dc.identifier.staff | une-id:malkala2 | en |
dc.identifier.staff | une-id:jgibson5 | en |
local.profile.orcid | 0000-0002-3206-6421 | en |
local.profile.orcid | 0000-0003-0371-2401 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/58848 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Developing flexible models for genetic evaluations in smallholder crossbred dairy farms | en |
local.relation.fundingsourcenote | This research was supported by the Bill and Melinda Gates Foundation (OP1112185; Seattle, WA). We gratefully acknowledge the support of the Animal Breeding and Genetics team of BAIF Development Research Foundation (Maharashtra, India). The authors have not stated any conflicts of interest. | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Costilla, R | en |
local.search.author | Zeng, J | en |
local.search.author | Al Kalaldeh, M | en |
local.search.author | Swaminathan, M | en |
local.search.author | Gibson, J P | en |
local.search.author | Ducrocq, V | en |
local.search.author | Hayes, B J | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/ee0e44eb-a6a9-4c21-9dd7-6c4a29f82cb8 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/ee0e44eb-a6a9-4c21-9dd7-6c4a29f82cb8 | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/ee0e44eb-a6a9-4c21-9dd7-6c4a29f82cb8 | en |
local.subject.for2020 | 3003 Animal production | en |
local.subject.seo2020 | 100402 Dairy cattle | en |
local.original.for2020 | 3003 Animal production | en |
local.original.seo2020 | tbd | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-05-01 | en |
Appears in Collections: | Journal Article School of Environmental and Rural Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/DevelopingAlKaladehGibson2023JournalArticle.pdf | Published Version | 2.51 MB | Adobe PDF Download Adobe | View/Open |
This item is licensed under a Creative Commons License