Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58777
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJohnston, Beauen
dc.contributor.authorFalzon, Gregoryen
dc.contributor.authorMilthorpe, Joshen
dc.date.accessioned2024-04-30T02:27:45Z-
dc.date.available2024-04-30T02:27:45Z-
dc.date.issued2018-07-
dc.identifier.citationProceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018, p. 561-569en
dc.identifier.urihttps://hdl.handle.net/1959.11/58777-
dc.description.abstract<p>OpenCL is an attractive programming model for heterogeneous high-performance computing systems, with wide support from hardware vendors and significant performance portability. To support efficient scheduling on HPC systems it is necessary to perform accurate performance predictions for OpenCL workloads on varied compute devices, which is challenging due to diverse computation, communication and memory access characteristics which result in varying performance between devices. The Architecture Independent Workload Characterization (AIWC) tool can be used to characterize OpenCL kernels according to a set of architecture-independent features. This work presents a methodology where AIWC features are used to form a model capable of predicting accelerator execution times. We used this methodology to predict execution times for a set of 37 computational kernels running on 15 different devices representing a broad range of CPU, GPU and MIC architectures. The predictions are highly accurate, differing from the measured experimental run-times by an average of only 1.2%, and correspond to actual execution time mispredictions of 9 ps to 1 sec according to problem size. A previously unencountered code can be instrumented once and the AIWC metrics embedded in the kernel, to allow performance prediction across the full range of modelled devices. The results suggest that this methodology supports correct selection of the most appropriate device for a previously unen- countered code, which is highly relevant to the HPC scheduling setting.</p>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartofProceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018en
dc.titleOpenCL performance prediction using architecture-independent featuresen
dc.typeConference Publicationen
dc.relation.conferenceHPCS 2018: International Conference on High Performance Computing & Simulationen
dc.identifier.doi10.1109/HPCS.2018.00095en
local.contributor.firstnameBeauen
local.contributor.firstnameGregoryen
local.contributor.firstnameJoshen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailbjohns34@une.edu.auen
local.profile.emailgfalzon2@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference16th - 20th July, 2018en
local.conference.placeFranceen
local.publisher.placeUnited States of Americaen
local.format.startpage561en
local.format.endpage569en
local.peerreviewedYesen
local.contributor.lastnameJohnstonen
local.contributor.lastnameFalzonen
local.contributor.lastnameMilthorpeen
dc.identifier.staffune-id:bjohns34en
dc.identifier.staffune-id:gfalzon2en
local.profile.orcid0000-0002-1989-9357en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58777en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleOpenCL performance prediction using architecture-independent featuresen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsHPCS 2018: International Conference on High Performance Computing & Simulation, France, 16th - 20th July, 2018en
local.search.authorJohnston, Beauen
local.search.authorFalzon, Gregoryen
local.search.authorMilthorpe, Joshen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2018en
local.subject.for20203002 Agriculture, land and farm managementen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-14en
local.date.moved2024-08-14en
local.date.moved2024-08-14en
Appears in Collections:Conference Publication
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

5
checked on Jul 6, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.