Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58604
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArheiam, Arheiamen
dc.contributor.authorBrown, Stephen Len
dc.contributor.authorHigham, Susan Men
dc.contributor.authorAlbadri, Sondosen
dc.contributor.authorHarris, Rebecca Ven
dc.date.accessioned2024-04-23T23:59:28Z-
dc.date.available2024-04-23T23:59:28Z-
dc.date.issued2016-
dc.identifier.citationCommunity Dentistry and Oral Epidemiology, 44(6), p. 592-601en
dc.identifier.issn1600-0528en
dc.identifier.issn0301-5661en
dc.identifier.urihttps://hdl.handle.net/1959.11/58604-
dc.description.abstract<p><i>Objectives:</i> Diet diaries are recommended for dentists to monitor children's sugar consumption. Diaries provide multifaceted dietary information, but patients respond better to simpler advice. We explore how dentists integrate information from diet diaries to deliver useable advice to patients. <i>Methods:</i> As part of a questionnaire study of general dental practitioners (GDPs) in Northwest England, we asked dentists to specify the advice they would give a hypothetical patient based upon a diet diary case vignette. A sequential mixed method approach was used for data analysis: an initial inductive content analysis (ICA) to develop coding system to capture the complexity of dietary assessment and delivered advice. Using these codes, a quantitative analysis was conducted to examine correspondences between identified dietary problems and advice given. From these correspondences, we inferred how dentists reduced problems to give simple advice. <i>Results:</i> A total of 229 dentists' responses were analysed. ICA on 40 questionnaires identified two distinctive approaches of developing diet advice: a summative (summary of issues into an all-encompassing message) and a selective approach (selection of a main message approach). In the quantitative analysis of all responses, raw frequencies indicated that dentists saw more problems than they advised on and provided highly specific advice on a restricted number of problems (e.g. not eating sugars before bedtime 50.7% or harmful items 42.4%, rather than simply reducing the amount of sugar 9.2%). Binary logistic regression models indicate that dentists provided specific advice that was tailored to the key problems that they identified. <i>Conclusion:</i> Dentists provided specific recommendations to address what they felt were key problems, whilst not intervening to address other problems that they may have felt less pressing.</p>en
dc.languageenen
dc.publisherWiley-Blackwell Publishing, Incen
dc.relation.ispartofCommunity Dentistry and Oral Epidemiologyen
dc.titleThe information filter: how dentists use diet diary information to give patients clear and simple adviceen
dc.typeJournal Articleen
dc.identifier.doi10.1111/cdoe.12253en
local.contributor.firstnameArheiamen
local.contributor.firstnameStephen Len
local.contributor.firstnameSusan Men
local.contributor.firstnameSondosen
local.contributor.firstnameRebecca Ven
local.profile.schoolSchool of Psychologyen
local.profile.emailsbrow238@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage592en
local.format.endpage601en
local.peerreviewedYesen
local.identifier.volume44en
local.identifier.issue6en
local.title.subtitlehow dentists use diet diary information to give patients clear and simple adviceen
local.contributor.lastnameArheiamen
local.contributor.lastnameBrownen
local.contributor.lastnameHighamen
local.contributor.lastnameAlbadrien
local.contributor.lastnameHarrisen
dc.identifier.staffune-id:sbrow238en
local.profile.orcid0000-0002-6142-0995en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58604en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleThe information filteren
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorArheiam, Arheiamen
local.search.authorBrown, Stephen Len
local.search.authorHigham, Susan Men
local.search.authorAlbadri, Sondosen
local.search.authorHarris, Rebecca Ven
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2016en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/1b8b32b7-1cfd-40f1-a30b-ccb2e6361801en
local.subject.for20205203 Clinical and health psychologyen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-04-24en
Appears in Collections:Journal Article
School of Psychology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

3
checked on Jan 11, 2025
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.