Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58399
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXu, Beibeien
dc.contributor.authorWang, Wenshengen
dc.contributor.authorFalzon, Gregoryen
dc.contributor.authorKwan, Paulen
dc.contributor.authorGuo, Leifengen
dc.contributor.authorChen, Guipengen
dc.contributor.authorTait, Amyen
dc.contributor.authorSchneider, Dereken
dc.date.accessioned2024-04-17T05:24:47Z-
dc.date.available2024-04-17T05:24:47Z-
dc.date.issued2020-
dc.identifier.citationComputers and Electronics in Agriculture, v.171, p. 1-12en
dc.identifier.issn1872-7107en
dc.identifier.issn0168-1699en
dc.identifier.urihttps://hdl.handle.net/1959.11/58399-
dc.description.abstract<p>The accurate and reliable counting of animals in quadcopter acquired imagery is one of the most promising but challenging tasks in intelligent livestock management in the future. In this paper we demonstrate the application of the cutting-edge instance segmentation framework, Mask R-CNN, in the context of cattle counting in different situations such as extensive production pastures and also in intensive housing such as feedlots. The optimal IoU threshold (0.5) and the full-appearance detection for the algorithm in this study are verified through performance evaluation. Experimental results in this research show the framework's potential to perform reliably in offline quadcopter vision systems with an accuracy of 94% in counting cattle on pastures and 92% in feedlots. Compared with the existing typical competing algorithms, Mask R-CNN outperforms both in the counting accuracy and average precision especially on the datasets with occlusion and overlapping. Our research shows promising steps towards the incorporation of artificial intelligence using quadcopters for enhanced management of animals.</p>en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofComputers and Electronics in Agricultureen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAutomated cattle counting using Mask R-CNN in quadcopter vision systemen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.compag.2020.105300en
local.contributor.firstnameBeibeien
local.contributor.firstnameWenshengen
local.contributor.firstnameGregoryen
local.contributor.firstnamePaulen
local.contributor.firstnameLeifengen
local.contributor.firstnameGuipengen
local.contributor.firstnameAmyen
local.contributor.firstnameDereken
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailbxu4@une.edu.auen
local.profile.emailgfalzon2@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.profile.emaildschnei5@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeThe Netherlandsen
local.identifier.runningnumber105300en
local.format.startpage1en
local.format.endpage12en
local.peerreviewedYesen
local.identifier.volume171en
local.access.fulltextYesen
local.contributor.lastnameXuen
local.contributor.lastnameWangen
local.contributor.lastnameFalzonen
local.contributor.lastnameKwanen
local.contributor.lastnameGuoen
local.contributor.lastnameChenen
local.contributor.lastnameTaiten
local.contributor.lastnameSchneideren
dc.identifier.staffune-id:bxu4en
dc.identifier.staffune-id:gfalzon2en
dc.identifier.staffune-id:wkwan2en
dc.identifier.staffune-id:dschnei5en
local.profile.orcid0000-0002-1989-9357en
local.profile.orcid0000-0002-1897-4175en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58399en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleAutomated cattle counting using Mask R-CNN in quadcopter vision systemen
local.relation.fundingsourcenoteThis research was funded by Beijing Aokemei Technical Service Company Limited and also was supported by Fundamental Research Funds of Agricultural Information Institute of Chinese Academy of Agriculture Sciences, China (JBYW-AII-2019-19), General Project of Jiangxi Province Key Research and Development Plan (20192BBF60053) and Jiangxi Province Science Foundation for Youths (20192ACBL21023). Imagery of the feedlot animals was provided by a University of New England project funded by Meat and Livestock Australia (MLA) (University of New England Animal Ethics Approval Number AEC18-308) and we are grateful to three private farmlands in New England in Australia for their kindly support with data collection (University of New England Standard Operating Procedure W14 Camera Traps and Animal Ethics Approval Number AEC19-009).en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorXu, Beibeien
local.search.authorWang, Wenshengen
local.search.authorFalzon, Gregoryen
local.search.authorKwan, Paulen
local.search.authorGuo, Leifengen
local.search.authorChen, Guipengen
local.search.authorTait, Amyen
local.search.authorSchneider, Dereken
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/fe3a401e-adfb-4bee-90ff-c1b290816016en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/fe3a401e-adfb-4bee-90ff-c1b290816016en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/fe3a401e-adfb-4bee-90ff-c1b290816016en
local.subject.for20203002 Agriculture, land and farm managementen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.date.moved2024-04-17en
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AutomatedXuFalzonSchneider2020JournalArticle.pdfPublished version4.04 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

138
checked on Jul 6, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons