Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/58223
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Leien
dc.contributor.authorNi, Wenjieen
dc.contributor.authorWang, Mingxinen
dc.date.accessioned2024-04-09T07:27:11Z-
dc.date.available2024-04-09T07:27:11Z-
dc.date.issued2023-
dc.identifier.citationDiscrete and Continuous Dynamical Systems. Series S, 17(2), p. 690-707en
dc.identifier.issn1937-1179en
dc.identifier.issn1937-1632en
dc.identifier.urihttps://hdl.handle.net/1959.11/58223-
dc.description.abstract<p>Taking into account the depletion of food supply by all individuals, and the fact that chronic infectious diseases will not cause the infected individuals to lose their fertility completely, we first propose a new SIR epidemic model of ODE. For this model, we derive its basic reproduction number R<sub>0</sub>, and show that the disease-free equilibrium point is globally asymptotically stable when R<sub>0</sub> ≤ 1, while the unique positive equilibrium point is globally asymptotically stable when R<sub>0</sub> > 1. Then we incorporate the spatial dispersion and free boundary condition into this ODE model. The well-posedness and longtime behaviors are obtained. Particularly, we find a spreading-vanishing dichotomy in which the basic reproduction number R<sub>0</sub> plays a crucial role.</p>en
dc.languageenen
dc.publisherAmer Inst Mathematical Sciences-Aimsen
dc.relation.ispartofDiscrete and Continuous Dynamical Systems. Series Sen
dc.titleDynamical Properties Of A New Sir Epidemic Modelen
dc.typeJournal Articleen
dc.identifier.doi10.3934/dcdss.2023076en
dc.subject.keywordsspreading and vanishingen
dc.subject.keywordsbasic reproduction numberen
dc.subject.keywordsfree boundariesen
dc.subject.keywordsMathematics, Applieden
dc.subject.keywordsMathematicsen
dc.subject.keywordsSIR modelen
local.contributor.firstnameLeien
local.contributor.firstnameWenjieen
local.contributor.firstnameMingxinen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailwni2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSPRINGFIELDen
local.format.startpage690en
local.format.endpage707en
local.peerreviewedYesen
local.identifier.volume17en
local.identifier.issue2en
local.contributor.lastnameLien
local.contributor.lastnameNien
local.contributor.lastnameWangen
dc.identifier.staffune-id:wni2en
local.profile.orcid0000-0002-3147-7296en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/58223en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDynamical Properties Of A New Sir Epidemic Modelen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLi, Leien
local.search.authorNi, Wenjieen
local.search.authorWang, Mingxinen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/e7e3130f-0afa-4fe3-ba91-96b6d7594e81en
local.subject.for20204904 Pure mathematicsen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.