Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/58223
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Lei | en |
dc.contributor.author | Ni, Wenjie | en |
dc.contributor.author | Wang, Mingxin | en |
dc.date.accessioned | 2024-04-09T07:27:11Z | - |
dc.date.available | 2024-04-09T07:27:11Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Discrete and Continuous Dynamical Systems. Series S, 17(2), p. 690-707 | en |
dc.identifier.issn | 1937-1179 | en |
dc.identifier.issn | 1937-1632 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/58223 | - |
dc.description.abstract | <p>Taking into account the depletion of food supply by all individuals, and the fact that chronic infectious diseases will not cause the infected individuals to lose their fertility completely, we first propose a new SIR epidemic model of ODE. For this model, we derive its basic reproduction number R<sub>0</sub>, and show that the disease-free equilibrium point is globally asymptotically stable when R<sub>0</sub> ≤ 1, while the unique positive equilibrium point is globally asymptotically stable when R<sub>0</sub> > 1. Then we incorporate the spatial dispersion and free boundary condition into this ODE model. The well-posedness and longtime behaviors are obtained. Particularly, we find a spreading-vanishing dichotomy in which the basic reproduction number R<sub>0</sub> plays a crucial role.</p> | en |
dc.language | en | en |
dc.publisher | Amer Inst Mathematical Sciences-Aims | en |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems. Series S | en |
dc.title | Dynamical Properties Of A New Sir Epidemic Model | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3934/dcdss.2023076 | en |
dc.subject.keywords | spreading and vanishing | en |
dc.subject.keywords | basic reproduction number | en |
dc.subject.keywords | free boundaries | en |
dc.subject.keywords | Mathematics, Applied | en |
dc.subject.keywords | Mathematics | en |
dc.subject.keywords | SIR model | en |
local.contributor.firstname | Lei | en |
local.contributor.firstname | Wenjie | en |
local.contributor.firstname | Mingxin | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | wni2@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | SPRINGFIELD | en |
local.format.startpage | 690 | en |
local.format.endpage | 707 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 17 | en |
local.identifier.issue | 2 | en |
local.contributor.lastname | Li | en |
local.contributor.lastname | Ni | en |
local.contributor.lastname | Wang | en |
dc.identifier.staff | une-id:wni2 | en |
local.profile.orcid | 0000-0002-3147-7296 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/58223 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Dynamical Properties Of A New Sir Epidemic Model | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Li, Lei | en |
local.search.author | Ni, Wenjie | en |
local.search.author | Wang, Mingxin | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/e7e3130f-0afa-4fe3-ba91-96b6d7594e81 | en |
local.subject.for2020 | 4904 Pure mathematics | en |
local.subject.seo2020 | tbd | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.