Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/57927
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtila, Orhanen
dc.contributor.authorDeniz, Erkanen
dc.contributor.authorAri, Alien
dc.contributor.authorSengur, Abdulkadiren
dc.contributor.authorChakraborty, Subrataen
dc.contributor.authorBarua, Prabal Dattaen
dc.contributor.authorRajendra Acharya, Uen
dc.date.accessioned2024-03-26T22:35:07Z-
dc.date.available2024-03-26T22:35:07Z-
dc.date.issued2023-08-08-
dc.identifier.citationSensors, 23(16), p. 1-16en
dc.identifier.issn1424-8220en
dc.identifier.urihttps://hdl.handle.net/1959.11/57927-
dc.description.abstract<p>Anxiety, learning disabilities, and depression are the symptoms of attention deficit hyperactivity disorder (ADHD), an isogenous pattern of hyperactivity, impulsivity, and inattention. For the early diagnosis of ADHD, electroencephalogram (EEG) signals are widely used. However, the direct analysis of an EEG is highly challenging as it is time-consuming, nonlinear, and nonstationary in nature. Thus, in this paper, a novel approach (LSGP-USFNet) is developed based on the patterns obtained from Ulam’s spiral and Sophia Germain’s prime numbers. The EEG signals are initially filtered to remove the noise and segmented with a non-overlapping sliding window of a length of 512 samples. Then, a time–frequency analysis approach, namely continuous wavelet transform, is applied to each channel of the segmented EEG signal to interpret it in the time and frequency domain. The obtained time–frequency representation is saved as a time–frequency image, and a non-overlapping <i>n × n</i> sliding window is applied to this image for patch extraction. An <i>n × n</i> Ulam’s spiral is localized on each patch, and the gray levels are acquired from this patch as features where Sophie Germain’s primes are located in Ulam’s spiral. All gray tones from all patches are concatenated to construct the features for ADHD and normal classes. A gray tone selection algorithm, namely ReliefF, is employed on the representative features to acquire the final most important gray tones. The support vector machine classifier is used with a 10-fold cross-validation criteria. Our proposed approach, LSGP-USFNet, was developed using a publicly available dataset and obtained an accuracy of 97.46% in detecting ADHD automatically. Our generated model is ready to be validated using a bigger database and it can also be used to detect other children’s neurological disorders.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofSensorsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleLSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signalsen
dc.typeJournal Articleen
dc.identifier.doi10.3390/s23167032en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameOrhanen
local.contributor.firstnameErkanen
local.contributor.firstnameAlien
local.contributor.firstnameAbdulkadiren
local.contributor.firstnameSubrataen
local.contributor.firstnamePrabal Dattaen
local.contributor.firstnameUen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailschakra3@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber7032en
local.format.startpage1en
local.format.endpage16en
local.peerreviewedYesen
local.identifier.volume23en
local.identifier.issue16en
local.title.subtitleAutomated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signalsen
local.access.fulltextYesen
local.contributor.lastnameAtilaen
local.contributor.lastnameDenizen
local.contributor.lastnameArien
local.contributor.lastnameSenguren
local.contributor.lastnameChakrabortyen
local.contributor.lastnameBaruaen
local.contributor.lastnameRajendra Acharyaen
dc.identifier.staffune-id:schakra3en
local.profile.orcid0000-0002-0102-5424en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/57927en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleLSGP-USFNeten
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorAtila, Orhanen
local.search.authorDeniz, Erkanen
local.search.authorAri, Alien
local.search.authorSengur, Abdulkadiren
local.search.authorChakraborty, Subrataen
local.search.authorBarua, Prabal Dattaen
local.search.authorRajendra Acharya, Uen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/bb626c33-a74a-46f4-abe7-89a20128c549en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/bb626c33-a74a-46f4-abe7-89a20128c549en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/bb626c33-a74a-46f4-abe7-89a20128c549en
local.subject.for20204601 Applied computingen
local.subject.seo2020TBDen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/LSGPUSFNetChakraborty2023JournalArticle.pdfPublished Version3.42 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

4
checked on Feb 15, 2025
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons