Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/57098
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMishra, Preetien
dc.contributor.authorVaradharajan, Vijayen
dc.contributor.authorPilli, Emmanuel Sen
dc.contributor.authorTupakula, Udayen
dc.date.accessioned2024-01-02T02:36:40Z-
dc.date.available2024-01-02T02:36:40Z-
dc.date.issued2020-09-
dc.identifier.citationIEEE Transactions on Cloud Computing, 8(3), p. 957-971en
dc.identifier.issn2168-7161en
dc.identifier.urihttps://hdl.handle.net/1959.11/57098-
dc.description.abstract<p>Cloud security is of paramount importance in the new era of computing. Advanced malware can hide their behavior on detection of the presence of a security tool at a tenant virtual machine (TVM). Hence, TVM-layer security solutions are not reliable. In this paper, we propose a Virtual Machine Introspection (VMI) based security architecture design for fine granular monitoring of the virtual machines to detect known attacks and their variants. We have developed techniques for monitoring the TVMs at the process level and system call level to detect attacks such as those based on malicious hidden processes, attacks that disable security tools in the virtual machines and attacks that alter the behavior of legitimate applications to access sensitive data. Our architecture, VMGuard, utilizes the introspection feature at the VMM-layer to analyze system call traces of programs running on TVM. VMGuard applies the software breakpoint injection technique which is OS agnostic and can be used to trap the execution of programs. Motivated by text mining approaches, VMGuard provides `Bag of n-grams (BonG)' approach integrated with Term Frequency-Inverse Document Frequency (TF-IDF) method, to extract and select features of normal and attack traces. It then applies the Random Forest classifier to produce a generic behavior for different categories of intrusions of the monitored TVM. We have implemented a prototype and conducted a detailed analysis using University of New Mexico (UNM) datasets and a Windows malware dataset obtained from the University of California. The results obtained are promising and demonstrate the applicability of the VMGuard. We compare VMGuard with existing techniques and discuss its advantages.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofIEEE Transactions on Cloud Computingen
dc.titleVMGuard: A VMI-Based Security Architecture for Intrusion Detection in Cloud Environmenten
dc.typeJournal Articleen
dc.identifier.doi10.1109/TCC.2018.2829202en
local.contributor.firstnamePreetien
local.contributor.firstnameVijayen
local.contributor.firstnameEmmanuel Sen
local.contributor.firstnameUdayen
local.profile.schoolSchool of Science & Technologyen
local.profile.emailutupakul@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited States of Americaen
local.format.startpage957en
local.format.endpage971en
local.peerreviewedYesen
local.identifier.volume8en
local.identifier.issue3en
local.title.subtitleA VMI-Based Security Architecture for Intrusion Detection in Cloud Environmenten
local.contributor.lastnameMishraen
local.contributor.lastnameVaradharajanen
local.contributor.lastnamePillien
local.contributor.lastnameTupakulaen
dc.identifier.staffune-id:utupakulen
local.profile.orcid0000-0001-5048-9797en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/57098en
local.date.onlineversion2018-04-20-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleVMGuarden
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMishra, Preetien
local.search.authorVaradharajan, Vijayen
local.search.authorPilli, Emmanuel Sen
local.search.authorTupakula, Udayen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2018en
local.year.published2020en
local.subject.for2020460407 System and network securityen
local.subject.seo2020220405 Cybersecurityen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

68
checked on Jul 6, 2024

Page view(s)

184
checked on May 5, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.