Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/56282
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karton, Amir | en |
dc.date.accessioned | 2023-10-05T23:56:50Z | - |
dc.date.available | 2023-10-05T23:56:50Z | - |
dc.date.issued | 2022-11-17 | - |
dc.identifier.citation | The Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory, 126(45), p. 8544-8555 | en |
dc.identifier.issn | 1520-5215 | en |
dc.identifier.issn | 1089-5639 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/56282 | - |
dc.description.abstract | <p>It is well established that the basis set convergence of the correlation consistent (cc-pV<i>n</i>Z) basis sets depends on the presence of high-exponent "tight" <i>d</i> functions in the basis set for second-row atoms. The effect has been linked to low-lying <i>3d</i> virtual orbitals approaching the valence shell. However, since most of this effect is captured at the self-consistent field level, the effect of tight <i>d</i> functions in high-level coupled-cluster calculations has not been extensively studied. Here, we construct an extensive data set of 45 second-row species to examine the effect of tight <i>d</i> functions in CCSD, CCSD(T), CCSDT, and CCSDT(Q) calculations in conjunction with basis sets of up to sextuple-ζ quality. The selected set of molecules covers the gamut from systems where the tight <i>d</i> functions play a relatively minor role (e.g., SiH, SH, SiF, PF<sub>3</sub>, HOCl, Cl<sub>2</sub>, and C<sub>2</sub>Cl<sub>2</sub>) to challenging systems containing a central second-row atom bonded to many oxygen or fluorine atoms (e.g., PF<sub>5</sub>, SF<sub>6</sub>, SO<sub>3</sub>, ClO<sub>3</sub>, and HClO<sub>4</sub>) and systems containing many second-row atoms (e.g., P<sub>4</sub>, S<sub>4</sub>, CCl<sub>4</sub>, and C<sub>2</sub>Cl<sub>6</sub>). In conjunction with the cc-pVDZ basis set, we find chemically significant contributions to the total atomization energies (TAEs) of up to ∼2 kcal/mol at the CCSD level, ∼1 kcal/mol at the (T) level, and contributions of up to ∼0.1 kcal/mol for the post-CCSD(T) components. The effects of the tight <i>d</i> functions are diminished with the size of the basis set" however, they are still chemically significant at the CCSD and (T) levels. For example, with the cc-pVTZ basis set, we obtain contributions to the TAEs of up to ∼1.5 and ∼0.3 kcal/mol at the CCSD and (T) levels, respectively, and with the cc-pVQZ basis set, we obtain contributions of up to ∼1.0 and ∼0.2 kcal/mol at the CCSD and (T) levels, respectively. We also find that a simple natural bond orbital population analysis of the <i>3d</i> orbitals of the second-row atom provides a useful <i>a priori</i> indicator of the magnitude of the effect of tight <i>d</i> functions on post-CCSD(T) contribution to the TAEs in oxide and fluoride systems. These results are particularly important in the context of high-level composite ab initio methods capable of confident benchmark accuracy in thermochemical predictions.<p> | en |
dc.language | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.ispartof | The Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory | en |
dc.title | Tightening the Screws: The Importance of Tight d Functions in Coupled-Cluster Calculations up to the CCSDT(Q) Level | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1021/acs.jpca.2c06522 | en |
local.contributor.firstname | Amir | en |
local.relation.isfundedby | ARC | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | akarton@une.edu.au | en |
local.output.category | C1 | en |
local.grant.number | FT170100373 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United States of America | en |
local.format.startpage | 8544 | en |
local.format.endpage | 8555 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 126 | en |
local.identifier.issue | 45 | en |
local.title.subtitle | The Importance of Tight d Functions in Coupled-Cluster Calculations up to the CCSDT(Q) Level | en |
local.contributor.lastname | Karton | en |
dc.identifier.staff | une-id:akarton | en |
local.profile.orcid | 0000-0002-7981-508X | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/56282 | en |
local.date.onlineversion | 2022-11-07 | - |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Tightening the Screws | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.relation.grantdescription | ARC/FT170100373 | en |
local.search.author | Karton, Amir | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/8ac59ec4-6ad8-4a70-ad55-c34a35341c17 | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.available | 2022 | en |
local.year.published | 2022 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/8ac59ec4-6ad8-4a70-ad55-c34a35341c17 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/8ac59ec4-6ad8-4a70-ad55-c34a35341c17 | en |
local.subject.for2020 | 340701 Computational chemistry | en |
local.subject.seo2020 | 280120 Expanding knowledge in the physical sciences | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Size | Format |
---|
SCOPUSTM
Citations
5
checked on Jul 6, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.