Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56242
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhan, Kamruzzamanen
dc.contributor.authorSalam, Md Abdusen
dc.contributor.authorMondal, Maniken
dc.contributor.authorAli Akbar, Men
dc.date.accessioned2023-10-03T01:29:00Z-
dc.date.available2023-10-03T01:29:00Z-
dc.date.issued2023-01-30-
dc.identifier.citationMathematical Methods in the Applied Sciences, 46(2), p. 2042-2054en
dc.identifier.issn1099-1476en
dc.identifier.issn0170-4214en
dc.identifier.urihttps://hdl.handle.net/1959.11/56242-
dc.description.abstract<p>Traveling wave solutions have played a vital role in demonstrating the wave character of nonlinear problems emerging in the field of mathematical sciences and engineering. To depict the nature of propagation of the nonlinear waves in nature, a range of nonlinear evolution equations has been proposed and investigated in the existing literature. In this article, solitary and traveling periodic wave solutions for the (2+1)-dimensional modified KdV-KP equation are derived by employing an ansatz method, named the enhanced (G'/G)-expansion method. For this continued equation, abundant solitary wave solutions and nonlinear periodic wave solutions, along with some free parameters, are obtained. We have derived the exact expressions for the solitary waves that arise in the continuum-modified KdV-KP model. We study the significance of parameters numerically that arise in the obtained solutions. These parameters play an important role in the physical structure and propagation directions of the wave that characterizes the wave pattern. We discuss the relation between velocity and parameters and illustrate them graphically. Our numerical analysis suggests that the taller solitons are narrower than shorter waves and can travel faster. In addition, graphical representations of some obtained solutions along with their contour plot and wave train profiles are presented. The speed, as well as the profile of these solitary waves, is highly sensitive to the free parameters. Our results establish that the continuum-modified KdV-KP system supports solitary waves having different shapes and speeds for different values of the parameters.</p>en
dc.languageenen
dc.publisherJohn Wiley & Sons Ltden
dc.relation.ispartofMathematical Methods in the Applied Sciencesen
dc.titleConstruction of traveling wave solutions of the (2 + 1)‐dimensional modified KdV‐KP equationen
dc.typeJournal Articleen
dc.identifier.doi10.1002/mma.8627en
local.contributor.firstnameKamruzzamanen
local.contributor.firstnameMd Abdusen
local.contributor.firstnameManiken
local.contributor.firstnameMen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailkkamruzz@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage2042en
local.format.endpage2054en
local.peerreviewedYesen
local.identifier.volume46en
local.identifier.issue2en
local.contributor.lastnameKhanen
local.contributor.lastnameSalamen
local.contributor.lastnameMondalen
local.contributor.lastnameAli Akbaren
dc.identifier.staffune-id:kkamruzzen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56242en
local.date.onlineversion2022-12-18-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleConstruction of traveling wave solutions of the (2 + 1)‐dimensional modified KdV‐KP equationen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKhan, Kamruzzamanen
local.search.authorSalam, Md Abdusen
local.search.authorMondal, Maniken
local.search.authorAli Akbar, Men
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2023en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/1570fc8f-8a67-4286-9827-223eb6941df1en
local.subject.for2020510301 Acoustics and acoustical devices; wavesen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

8
checked on Feb 8, 2025

Page view(s)

134
checked on Nov 19, 2023

Download(s)

2
checked on Nov 19, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.