Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56237
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhan, Kamruzzamanen
dc.contributor.authorMudaliar, Rajnesh Ken
dc.contributor.authorRayhanul Islam, S Men
dc.date.accessioned2023-10-02T23:22:09Z-
dc.date.available2023-10-02T23:22:09Z-
dc.date.issued2023-06-
dc.identifier.citationInternational Journal of Applied and Computational Mathematics, 9(3), p. 1-17en
dc.identifier.issn2199-5796en
dc.identifier.issn2349-5103en
dc.identifier.urihttps://hdl.handle.net/1959.11/56237-
dc.description.abstract<p>In this research work, two mathematical models, the (1+1)-dimensional cKdV–mKdV equation and the sinh-Gordon (shG) equation, are studied using an analytical method to obtain solitary wave solutions. The paper presents explicit parameterized traveling wave solutions for these equations, with hyperbolic function solutions resulting in solitary wave solutions when specific parameter values are used. The Hamiltonian function and phase plane are briefly discussed, and the relationship between the phase picture and its corresponding component solutions are depicticted. The phase orbits of the planar dynamical system are also studied to determine all the traveling wave solutions of the analyzed models. In this article we also examines the impact of parameters on wave velocity and profile. According to the research findings, the method employed is efficient and applicable to different mathematical physics nonlinear evolution equations.</p>en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofInternational Journal of Applied and Computational Mathematicsen
dc.titleTraveling Waves in Two Distinct Equations: The (1+1)-Dimensional cKdV–mKdV Equation and The sinh-Gordon Equationen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s40819-023-01503-9en
local.contributor.firstnameKamruzzamanen
local.contributor.firstnameRajnesh Ken
local.contributor.firstnameS Men
local.profile.schoolSchool of Science and Technologyen
local.profile.emailkkamruzz@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.identifier.runningnumber21en
local.format.startpage1en
local.format.endpage17en
local.peerreviewedYesen
local.identifier.volume9en
local.identifier.issue3en
local.title.subtitleThe (1+1)-Dimensional cKdV–mKdV Equation and The sinh-Gordon Equationen
local.contributor.lastnameKhanen
local.contributor.lastnameMudaliaren
local.contributor.lastnameRayhanul Islamen
dc.identifier.staffune-id:kkamruzzen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56237en
local.date.onlineversion2023-04-11-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleTraveling Waves in Two Distinct Equationsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorKhan, Kamruzzamanen
local.search.authorMudaliar, Rajnesh Ken
local.search.authorRayhanul Islam, S Men
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023-
local.year.published2023-
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/36d5ce0e-6f2d-4100-992f-3f23e215460fen
local.subject.for2020510301 Acoustics and acoustical devices; wavesen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

SCOPUSTM   
Citations

11
checked on Feb 8, 2025

Page view(s)

158
checked on Nov 19, 2023

Download(s)

2
checked on Nov 19, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.