Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56040
Full metadata record
DC FieldValueLanguage
dc.contributor.authorClark, Andrewen
dc.contributor.authorPhinn, Stuarten
dc.contributor.authorScarth, Peteren
dc.date.accessioned2023-09-14T06:11:42Z-
dc.date.available2023-09-14T06:11:42Z-
dc.date.issued2023-04-
dc.identifier.citationPFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, v.91, p. 125-147en
dc.identifier.issn2512-2819en
dc.identifier.issn2512-2789en
dc.identifier.urihttps://hdl.handle.net/1959.11/56040-
dc.description.abstract<p>Convolutional Neural Networks (CNN) consist of various hyper-parameters which need to be specifed or can be altered when defning a deep learning architecture. There are numerous studies which have tested diferent types of networks (e.g. U-Net, DeepLabv3+) or created new architectures, benchmarked against well-known test datasets. However, there is a lack of real-world mapping applications demonstrating the efects of changing network hyper-parameters on model performance for land use and land cover (LULC) semantic segmentation. In this paper, we analysed the efects on training time and classifcation accuracy by altering parameters such as the number of initial convolutional flters, kernel size, network depth, kernel initialiser and activation functions, loss and loss optimiser functions, and learning rate. We achieved this using a well-known top performing architecture, the U-Net, in conjunction with LULC training data and two multispectral aerial images from North Queensland, Australia. A 2018 image was used to train and test CNN models with diferent parameters and a 2015 image was used for assessing the optimised parameters. We found more complex models with a larger number of flters and larger kernel size produce classifcations of higher accuracy but take longer to train. Using an accuracy-time ranking formula, we found using 56 initial flters with kernel size of 5×5 provide the best compromise between training time and accuracy. When fully training a model using these parameters and testing on the 2015 image, we achieved a kappa score of 0.84. This compares to the original U-Net parameters which achieved a kappa score of 0.73.</p>en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofPFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Scienceen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleOptimised U-Net for Land Use–Land Cover Classification Using Aerial Photographyen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s41064-023-00233-3en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAndrewen
local.contributor.firstnameStuarten
local.contributor.firstnamePeteren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailaclar200@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.format.startpage125en
local.format.endpage147en
local.peerreviewedYesen
local.identifier.volume91en
local.access.fulltextYesen
local.contributor.lastnameClarken
local.contributor.lastnamePhinnen
local.contributor.lastnameScarthen
dc.identifier.staffune-id:aclar200en
local.profile.orcid0000-0002-5309-6910en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56040en
local.date.onlineversion2023-02-13-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleOptimised U-Net for Land Use–Land Cover Classification Using Aerial Photographyen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorClark, Andrewen
local.search.authorPhinn, Stuarten
local.search.authorScarth, Peteren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/9e4a4af0-6f13-4589-8576-672c67e79ac5en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023en
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/9e4a4af0-6f13-4589-8576-672c67e79ac5en
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/9e4a4af0-6f13-4589-8576-672c67e79ac5en
local.subject.for2020401304 Photogrammetry and remote sensingen
local.subject.for2020461103 Deep learningen
local.subject.for2020330404 Land use and environmental planningen
local.subject.seo2020140106 Landen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/OptimisedClarkPhinnScrath2023JournalArticle.pdfPublished Version6.36 MBAdobe PDF
Download Adobe
View/Open
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons