Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/56035
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Clark, Andrew | en |
dc.contributor.author | Phinn, Stuart | en |
dc.contributor.author | Scarth, Peter | en |
dc.date.accessioned | 2023-09-14T00:07:27Z | - |
dc.date.available | 2023-09-14T00:07:27Z | - |
dc.date.issued | 2023-06-21 | - |
dc.identifier.citation | Land, 12(7), p. 1-25 | en |
dc.identifier.issn | 2073-445X | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/56035 | - |
dc.description.abstract | <p>Data pre-processing for developing a generalised land use and land cover (LULC) deep learning model using earth observation data is important for the classification of a different date and/or sensor. However, it is unclear how to approach deep learning segmentation problems in earth observation data. In this paper, we trialled different methods of data preparation for Convolutional Neural Network (CNN) training and semantic segmentation of LULC features within aerial photography over the Wet Tropics and Atherton Tablelands, Queensland, Australia. This was conducted by trialling and ranking various training patch selection sampling strategies, patch and batch sizes, data augmentations and scaling and inference strategies. Our results showed: a stratified random sampling approach for producing training patches counteracted class imbalances" a smaller number of larger patches (small batch size) improves model accuracy" data augmentations and scaling are imperative in creating a generalised model able to accurately classify LULC features in imagery from a different date and sensor" and producing the output classification by averaging multiple grids of patches and three rotated versions of each patch produced a more accurate and aesthetic result. Combining the findings from the trials, we fully trained five models on the 2018 training image and applied the model to the 2015 test image. The output LULC classifications achieved an average kappa of 0.84, user accuracy of 0.81, and producer accuracy of 0.87. Future research using CNNs and earth observation data should implement the findings of this project to increase LULC model accuracy and transferability.</p> | en |
dc.language | en | en |
dc.publisher | MDPI AG | en |
dc.relation.ispartof | Land | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Pre-Processing Training Data Improves Accuracy and Generalisability of Convolutional Neural Network Based Landscape Semantic Segmentation | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.3390/land12071268 | en |
dcterms.accessRights | UNE Green | en |
local.contributor.firstname | Andrew | en |
local.contributor.firstname | Stuart | en |
local.contributor.firstname | Peter | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | aclar200@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Switzerland | en |
local.identifier.runningnumber | 1268 | en |
local.format.startpage | 1 | en |
local.format.endpage | 25 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 12 | en |
local.identifier.issue | 7 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Clark | en |
local.contributor.lastname | Phinn | en |
local.contributor.lastname | Scarth | en |
dc.identifier.staff | une-id:aclar200 | en |
local.profile.orcid | 0000-0002-5309-6910 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/56035 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Pre-Processing Training Data Improves Accuracy and Generalisability of Convolutional Neural Network Based Landscape Semantic Segmentation | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Clark, Andrew | en |
local.search.author | Phinn, Stuart | en |
local.search.author | Scarth, Peter | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/19804417-5f1a-4e3d-a1ed-72e424eb23ac | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2023 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/19804417-5f1a-4e3d-a1ed-72e424eb23ac | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/19804417-5f1a-4e3d-a1ed-72e424eb23ac | en |
local.subject.for2020 | 461103 Deep learning | en |
local.subject.for2020 | 401304 Photogrammetry and remote sensing | en |
local.subject.for2020 | 330404 Land use and environmental planning | en |
local.subject.seo2020 | 140106 Land | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Journal Article School of Science and Technology |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/PreProcessingClark2023JournalArticle.pdf | Published Version | 13.95 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
2
checked on May 25, 2024
Page view(s)
248
checked on May 5, 2024
Download(s)
2
checked on May 5, 2024
This item is licensed under a Creative Commons License