Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56035
Full metadata record
DC FieldValueLanguage
dc.contributor.authorClark, Andrewen
dc.contributor.authorPhinn, Stuarten
dc.contributor.authorScarth, Peteren
dc.date.accessioned2023-09-14T00:07:27Z-
dc.date.available2023-09-14T00:07:27Z-
dc.date.issued2023-06-21-
dc.identifier.citationLand, 12(7), p. 1-25en
dc.identifier.issn2073-445Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/56035-
dc.description.abstract<p>Data pre-processing for developing a generalised land use and land cover (LULC) deep learning model using earth observation data is important for the classification of a different date and/or sensor. However, it is unclear how to approach deep learning segmentation problems in earth observation data. In this paper, we trialled different methods of data preparation for Convolutional Neural Network (CNN) training and semantic segmentation of LULC features within aerial photography over the Wet Tropics and Atherton Tablelands, Queensland, Australia. This was conducted by trialling and ranking various training patch selection sampling strategies, patch and batch sizes, data augmentations and scaling and inference strategies. Our results showed: a stratified random sampling approach for producing training patches counteracted class imbalances" a smaller number of larger patches (small batch size) improves model accuracy" data augmentations and scaling are imperative in creating a generalised model able to accurately classify LULC features in imagery from a different date and sensor" and producing the output classification by averaging multiple grids of patches and three rotated versions of each patch produced a more accurate and aesthetic result. Combining the findings from the trials, we fully trained five models on the 2018 training image and applied the model to the 2015 test image. The output LULC classifications achieved an average kappa of 0.84, user accuracy of 0.81, and producer accuracy of 0.87. Future research using CNNs and earth observation data should implement the findings of this project to increase LULC model accuracy and transferability.</p>en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofLanden
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titlePre-Processing Training Data Improves Accuracy and Generalisability of Convolutional Neural Network Based Landscape Semantic Segmentationen
dc.typeJournal Articleen
dc.identifier.doi10.3390/land12071268en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameAndrewen
local.contributor.firstnameStuarten
local.contributor.firstnamePeteren
local.profile.schoolSchool of Science and Technologyen
local.profile.emailaclar200@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber1268en
local.format.startpage1en
local.format.endpage25en
local.peerreviewedYesen
local.identifier.volume12en
local.identifier.issue7en
local.access.fulltextYesen
local.contributor.lastnameClarken
local.contributor.lastnamePhinnen
local.contributor.lastnameScarthen
dc.identifier.staffune-id:aclar200en
local.profile.orcid0000-0002-5309-6910en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56035en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitlePre-Processing Training Data Improves Accuracy and Generalisability of Convolutional Neural Network Based Landscape Semantic Segmentationen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorClark, Andrewen
local.search.authorPhinn, Stuarten
local.search.authorScarth, Peteren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/19804417-5f1a-4e3d-a1ed-72e424eb23acen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2023en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/19804417-5f1a-4e3d-a1ed-72e424eb23acen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/19804417-5f1a-4e3d-a1ed-72e424eb23acen
local.subject.for2020461103 Deep learningen
local.subject.for2020401304 Photogrammetry and remote sensingen
local.subject.for2020330404 Land use and environmental planningen
local.subject.seo2020140106 Landen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/PreProcessingClark2023JournalArticle.pdfPublished Version13.95 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

2
checked on May 25, 2024

Page view(s)

248
checked on May 5, 2024

Download(s)

2
checked on May 5, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons