Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56022
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantra, Golokeshen
dc.contributor.authorSemidalas, Emmanouilen
dc.contributor.authorMehta, Nishaen
dc.contributor.authorKarton, Amiren
dc.contributor.authorMartin, Jan M Len
dc.date.accessioned2023-09-12T04:25:09Z-
dc.date.available2023-09-12T04:25:09Z-
dc.date.issued2022-11-07-
dc.identifier.citationPhysical Chemistry Chemical Physics, 24(41), p. 25555-25570en
dc.identifier.issn1463-9084en
dc.identifier.issn1463-9076en
dc.identifier.urihttps://hdl.handle.net/1959.11/56022-
dc.description.abstract<p>The S66x8 noncovalent interactions benchmark has been re-evaluated at the "sterling silver" level, using explicitly correlated MP2-F12 near the complete basis set limit, CCSD(F12*)/aug-cc-pVTZ-F12, and a (T) correction from conventional CCSD(T)/sano-V{D,T}Z+ calculations. The revised reference values differ by 0.1 kcal mol<sup>-1</sup> RMS from the original Hobza benchmark and its revision by Brauer et al., but by only 0.04 kcal mol<sup>-1</sup> RMS from the "bronze" level data in Kesharwani <i>et al., Aust. J. Chem.,</i> 2018, <b>71</b>, 238– 248. We then used these to assess the performance of localized-orbital coupled cluster approaches with and without counterpoise corrections, such as PNO-LCCSD(T) as implemented in MOLPRO, DLPNO-CCSD(T<sub>1</sub>) as implemented in ORCA, and LNO-CCSD(T) as implemented in MRCC, for their respective "Normal", "Tight", and "very Tight" settings. We also considered composite approaches combining different basis sets and cutoffs. Furthermore, in order to isolate basis set convergence from domain truncation error, for the aug-cc-pVTZ basis set we compared PNO, DLPNO, and LNO approaches with canonical CCSD(T). We conclude that LNO-CCSD(T) with very tight criteria performs very well for "raw" (CP-uncorrected), but struggles to reproduce counterpoise-corrected numbers even for very very criteria: this means that accurate results can be obtained using either extrapolation from basis sets large enough to quench basis set superposition error (BSSE) such as aug-cc-pV{Q,5}Z, or using a composite scheme such as Tight{T,Q} + 1.11[vvTight(T) Tight(T)]. In contrast, PNO-LCCSD(T) works best with counterpoise, while performance with and without counterpoise is comparable for DLPNO-CCSD(T<sub>1</sub>). Among more economical methods, the highest accuracies are seen for dRPA75- D3BJ, ωB97M-V, ωB97M(2), revDSD-PBEP86-D4, and DFT(SAPT) with a TDEXX or ATDEXX kernel.</p>en
dc.languageenen
dc.publisherRoyal Society of Chemistryen
dc.relation.ispartofPhysical Chemistry Chemical Physicsen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleS66x8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methodsen
dc.typeJournal Articleen
dc.identifier.doi10.1039/D2CP03938Aen
dcterms.accessRightsUNE Greenen
local.contributor.firstnameGolokeshen
local.contributor.firstnameEmmanouilen
local.contributor.firstnameNishaen
local.contributor.firstnameAmiren
local.contributor.firstnameJan M Len
local.relation.isfundedbyARCen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailakarton@une.edu.auen
local.output.categoryC1en
local.grant.numberFT170100373en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage25555en
local.format.endpage25570en
local.peerreviewedYesen
local.identifier.volume24en
local.identifier.issue41en
local.title.subtitlenew benchmark and performance of composite localized coupled-cluster methodsen
local.access.fulltextYesen
local.contributor.lastnameSantraen
local.contributor.lastnameSemidalasen
local.contributor.lastnameMehtaen
local.contributor.lastnameKartonen
local.contributor.lastnameMartinen
dc.identifier.staffune-id:akartonen
local.profile.orcid0000-0002-7981-508Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56022en
local.date.onlineversion2022-10-11-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleS66x8 noncovalent interactions revisiteden
local.relation.fundingsourcenoteThis research was funded by the Israel Science Foundation (grant 1969/20), the Minerva Foundation (grant 20/05), as well as by a research grant from the Artificial Intelligence and Smart Materials Research Fund, in Memory of Dr Uriel Arnon, Israel. GS acknowledges a doctoral fellowship from the Feinberg Graduate School (WIS). The work of E. S. on this scientific paper was supported by the Onassis Foundation—Scholarship ID: FZP 052-2/2021-2022.en
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.relation.grantdescriptionARC/FT170100373en
local.search.authorSantra, Golokeshen
local.search.authorSemidalas, Emmanouilen
local.search.authorMehta, Nishaen
local.search.authorKarton, Amiren
local.search.authorMartin, Jan M Len
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/2e2ca4b6-39ee-4238-967a-9c87d3d41d9cen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2022en
local.year.published2022en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/2e2ca4b6-39ee-4238-967a-9c87d3d41d9cen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/2e2ca4b6-39ee-4238-967a-9c87d3d41d9cen
local.subject.for2020340701 Computational chemistryen
local.subject.seo2020280120 Expanding knowledge in the physical sciencesen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
openpublished/S66x8NoncovalentKarton2022JournalArticle.pdfPublished Version3.45 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

13
checked on Jul 6, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons