Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/56016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorO'Reilly, Robert Jen
dc.contributor.authorKarton, Amiren
dc.date.accessioned2023-09-12T00:46:31Z-
dc.date.available2023-09-12T00:46:31Z-
dc.date.issued2023-06-
dc.identifier.citationElectronic Structure, 5(2), p. 1-12en
dc.identifier.issn2516-1075en
dc.identifier.urihttps://hdl.handle.net/1959.11/56016-
dc.description.abstract<p>The relative free energies of the isomers formed upon <i>N</i>-chlorination of each nitrogen atom within the DNA nucleobases (adenine, guanine, and thymine) have been obtained using the high-level G4(MP2) composite <i>ab initio</i> method (the free energies of the <i>N</i>-chlorinated isomers of cytosine have been reported at the same level of theory previously). Having identified the lowest energy <i>N</i>-chlorinated derivatives for each nucleobase, we have computed the free energies associated with chlorine transfer from <i>N</i>-chlorinated nucleobases to other unsubstituted bases. Our results provide quantitative support pertaining to the results of previous experimental studies, which demonstrated that rapid chlorine transfer occurs from <i>N</i>-chlorothymidine to cytidine or adenosine. The results of our calculations in the gas-phase reveal that chlorine transfer from <i>N</i>-chlorothymine to either cytosine, adenine, or guanine proceed via exergonic processes with ∆G<sup>o</sup> values of −50.3 (cytosine), −28.0 (guanine), and −6.7 (adenine) kJ mol<sup>–1</sup>. Additionally, we consider the effect of aqueous solvation by augmenting our gas-phase G4(MP2) energies with solvation corrections obtained using the conductor-like polarizable continuum model. In aqueous solution, we obtain the following G4(MP2) free energies associated with chlorine transfer from <i>N</i>-chlorothymine to the three other nucleobases: −58.4 (cytosine), −26.4 (adenine), and −18.7 (guanine) kJ mol<sup>–1</sup>. Therefore, our calculations, whether in the gas phase or in aqueous solution, clearly indicate that chlorine transfer from any of the <i>N</i>-chlorinated nucleobases to cytosine provides a thermodynamic sink for the active chlorine. This thermodynamic preference for chlorine transfer to cytidine may be particularly deleterious since previous experimental studies have shown that nitrogen-centered radical formation (via N–Cl bond homolysis) is more easily achieved in <i>N</i>-chlorinated cytidine than in other <i>N</i>-chlorinated nucleosides. </p>en
dc.languageenen
dc.publisherInstitute of Physics Publishing Ltden
dc.relation.ispartofElectronic Structureen
dc.titleA high-level quantum chemical study of the thermodynamics associated with chlorine transfer between N-chlorinated nucleobasesen
dc.typeJournal Articleen
dc.identifier.doi10.1088/2516-1075/acd234en
local.contributor.firstnameRobert Jen
local.contributor.firstnameAmiren
local.profile.schoolSchool of Science & Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailroreill6@une.edu.auen
local.profile.emailakarton@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.identifier.runningnumber024005en
local.format.startpage1en
local.format.endpage12en
local.peerreviewedYesen
local.identifier.volume5en
local.identifier.issue2en
local.contributor.lastnameO'Reillyen
local.contributor.lastnameKartonen
dc.identifier.staffune-id:roreill6en
dc.identifier.staffune-id:akartonen
local.profile.orcid0000-0002-5000-1920en
local.profile.orcid0000-0002-7981-508Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/56016en
local.date.onlineversion2023-05-12-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA high-level quantum chemical study of the thermodynamics associated with chlorine transfer between N-chlorinated nucleobasesen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorO'Reilly, Robert Jen
local.search.authorKarton, Amiren
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/002b807c-a01e-44c5-b002-aa53cec82db7en
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.available2023-
local.year.published2023-
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/002b807c-a01e-44c5-b002-aa53cec82db7en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/002b807c-a01e-44c5-b002-aa53cec82db7en
local.subject.for2020340701 Computational chemistryen
local.subject.seo2020280120 Expanding knowledge in the physical sciencesen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Journal Article
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.